These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 39427084)
1. Leveraging the variational Bayes autoencoder for survival analysis. Apellániz PA; Parras J; Zazo S Sci Rep; 2024 Oct; 14(1):24567. PubMed ID: 39427084 [TBL] [Abstract][Full Text] [Related]
2. Impact of censoring on learning Bayesian networks in survival modelling. Stajduhar I; Dalbelo-Basić B; Bogunović N Artif Intell Med; 2009 Nov; 47(3):199-217. PubMed ID: 19833488 [TBL] [Abstract][Full Text] [Related]
3. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations. Shi Z; Zhang H; Jin C; Quan X; Yin Y BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450 [TBL] [Abstract][Full Text] [Related]
4. Variational Learning of Individual Survival Distributions. Xiu Z; Tao C; Henao R Proc ACM Conf Health Inference Learn (2020); 2020 Apr; 2020():10-18. PubMed ID: 35098265 [TBL] [Abstract][Full Text] [Related]
5. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation. Tang B; Iyer A; Rao V; Kong N Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856 [TBL] [Abstract][Full Text] [Related]
6. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data. Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197 [TBL] [Abstract][Full Text] [Related]
8. Combining propensity score methods with variational autoencoders for generating synthetic data in presence of latent sub-groups. Farhadyar K; Bonofiglio F; Hackenberg M; Behrens M; Zöller D; Binder H BMC Med Res Methodol; 2024 Sep; 24(1):198. PubMed ID: 39251921 [TBL] [Abstract][Full Text] [Related]
9. Research on load clustering algorithm based on variational autoencoder and hierarchical clustering. Cai M; Zheng Y; Peng Z; Huang C; Jiang H PLoS One; 2024; 19(6):e0303977. PubMed ID: 38870191 [TBL] [Abstract][Full Text] [Related]
10. VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics. Seninge L; Anastopoulos I; Ding H; Stuart J Nat Commun; 2021 Sep; 12(1):5684. PubMed ID: 34584103 [TBL] [Abstract][Full Text] [Related]
11. Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. Thrift WJ; Ronaghi S; Samad M; Wei H; Nguyen DG; Cabuslay AS; Groome CE; Santiago PJ; Baldi P; Hochbaum AI; Ragan R ACS Nano; 2020 Nov; 14(11):15336-15348. PubMed ID: 33095005 [TBL] [Abstract][Full Text] [Related]
12. Achieving deep clustering through the use of variational autoencoders and similarity-based loss. Ma H Math Biosci Eng; 2022 Jul; 19(10):10344-10360. PubMed ID: 36031997 [TBL] [Abstract][Full Text] [Related]
13. Robust Semisupervised Deep Generative Model Under Compound Noise. Chen X IEEE Trans Neural Netw Learn Syst; 2023 Mar; 34(3):1179-1193. PubMed ID: 34437072 [TBL] [Abstract][Full Text] [Related]
14. Interpretable Machine Learning Models for Molecular Design of Tyrosine Kinase Inhibitors Using Variational Autoencoders and Perturbation-Based Approach of Chemical Space Exploration. Krishnan K; Kassab R; Agajanian S; Verkhivker G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232566 [TBL] [Abstract][Full Text] [Related]
15. Deep generative priors for biomolecular 3D heterogeneous reconstruction from cryo-EM projections. Shi B; Zhang K; Fleet DJ; McLeod RA; Dwayne Miller RJ; Howe JY J Struct Biol; 2024 Jun; 216(2):108073. PubMed ID: 38432598 [TBL] [Abstract][Full Text] [Related]
17. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification. Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884 [TBL] [Abstract][Full Text] [Related]
18. CondiS: A conditional survival distribution-based method for censored data imputation overcoming the hurdle in machine learning-based survival analysis. Wang Y; Flowers CR; Li Z; Huang X J Biomed Inform; 2022 Jul; 131():104117. PubMed ID: 35690348 [TBL] [Abstract][Full Text] [Related]
19. Data Augmentation with Cross-Modal Variational Autoencoders (DACMVA) for Cancer Survival Prediction. Rajaram S; Mitchell CS Information (Basel); 2024 Jan; 15(1):. PubMed ID: 38665395 [TBL] [Abstract][Full Text] [Related]
20. The Concordance Index decomposition: A measure for a deeper understanding of survival prediction models. Alabdallah A; Ohlsson M; Pashami S; Rögnvaldsson T Artif Intell Med; 2024 Feb; 148():102781. PubMed ID: 38325926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]