These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 3942729)
1. Effect of extracellular potassium on amino acid transport and membrane potential in fetal human fibroblasts. Bussolati O; Laris PC; Longo N; Dall'Asta V; Franchi-Gazzola R; Guidotti GG; Gazzola GC Biochim Biophys Acta; 1986 Jan; 854(2):240-50. PubMed ID: 3942729 [TBL] [Abstract][Full Text] [Related]
2. Influx of L-arginine is an indicator of membrane potential in human fibroblasts. Bussolati O; Laris PC; Nucci FA; Dall'Asta V; Franchi-Gazzola R; Guidotti GG; Gazzola GC Am J Physiol; 1989 Apr; 256(4 Pt 1):C930-5. PubMed ID: 2539733 [TBL] [Abstract][Full Text] [Related]
3. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts. Lever JE Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993 [No Abstract] [Full Text] [Related]
4. Differential effects of transmembrane potential on two Na+-dependent transport systems for neutral amino acids. Valdeolmillos M; GarcĂa-Sancho J; Herreros B Biochim Biophys Acta; 1986 Jun; 858(1):181-7. PubMed ID: 3707961 [TBL] [Abstract][Full Text] [Related]
5. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Bakker EP Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627 [TBL] [Abstract][Full Text] [Related]
6. Bimodal effects of cellular amino acids on Na+-dependent amino acid transport in Ehrlich cells. Johnstone RM; Laris PC Biochim Biophys Acta; 1980 Jul; 599(2):715-30. PubMed ID: 7407111 [TBL] [Abstract][Full Text] [Related]
7. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx. Restrepo D; Kimmich GA Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314 [No Abstract] [Full Text] [Related]
8. Enhancement of transmembrane proton conductivity of protonophores by membrane-permeant cations. Ahmed I; Krishnamoorthy G Biochim Biophys Acta; 1990 May; 1024(2):298-306. PubMed ID: 1693858 [TBL] [Abstract][Full Text] [Related]
9. The relationship between valinomycin-induced alterations in membrane phospholipid fatty acid turnover, membrane potential, and cell volume in the human erythrocyte. Dise CA; Goodman DB J Biol Chem; 1985 Mar; 260(5):2869-74. PubMed ID: 3972807 [TBL] [Abstract][Full Text] [Related]
10. Dependence of L-arginine accumulation on membrane potential in cultured human fibroblasts. Bussolati O; Laris PC; Nucci FA; Dall'Asta V; Longo N; Guidotti GG; Gazzola GC Am J Physiol; 1987 Sep; 253(3 Pt 1):C391-7. PubMed ID: 3631247 [TBL] [Abstract][Full Text] [Related]
11. Ionophore-mediated coupling between ion fluxes and amino acid absorption in mouse ascites-tumour cells. Restoration of the physiological gradients of methionine by valinomycin in the absence of adenosine triphosphate. Reid M; Gibb LE; Eddy AA Biochem J; 1974 Jun; 140(3):383-93. PubMed ID: 4141255 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. Rugolo M; Lenaz G J Bioenerg Biomembr; 1987 Dec; 19(6):705-18. PubMed ID: 3693347 [TBL] [Abstract][Full Text] [Related]
13. Role of membrane potential in hypoxic inhibition of L-arginine uptake by lung endothelial cells. Zharikov SI; Herrera H; Block ER Am J Physiol; 1997 Jan; 272(1 Pt 1):L78-84. PubMed ID: 9038906 [TBL] [Abstract][Full Text] [Related]
14. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium. Rudnick G; Nelson PJ Biochemistry; 1978 Oct; 17(22):4739-42. PubMed ID: 728383 [TBL] [Abstract][Full Text] [Related]
15. Plasma membrane potential of murine erythroleukemia cells: approach to measurement and evidence for cell-density dependence. Arcangeli A; Olivotto M J Cell Physiol; 1986 Apr; 127(1):17-27. PubMed ID: 3457015 [TBL] [Abstract][Full Text] [Related]
16. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation. Lever JE J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316 [No Abstract] [Full Text] [Related]
17. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH. Guffanti AA; Chiu E; Krulwich TA Arch Biochem Biophys; 1985 Jun; 239(2):327-33. PubMed ID: 4004268 [TBL] [Abstract][Full Text] [Related]
18. Kinetic correlation of the acquisition of resistance to immune attack in schistosomula of Schistosoma mansoni with a developmental change in membrane potential. Pearce EJ; Zilberstein D; James SL; Sher A Mol Biochem Parasitol; 1986 Dec; 21(3):259-67. PubMed ID: 3807946 [TBL] [Abstract][Full Text] [Related]
19. Regulation of active amino acid transport by growth-related changes in membrane potential in a human fibroblast. Villereal ML; Cook JS J Biol Chem; 1978 Nov; 253(22):8257-62. PubMed ID: 711750 [No Abstract] [Full Text] [Related]
20. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier. Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]