These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3942729)

  • 21. The characterization of intestinal acidic amino-acid transport.
    Wingrove TG; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():80-2. PubMed ID: 2868687
    [No Abstract]   [Full Text] [Related]  

  • 22. Role of the membrane potential in serum-stimulated uptake of amino acid in a diploid human fibroblast.
    Vilereal ML; Cook JS
    J Supramol Struct; 1977; 6(2):179-89. PubMed ID: 909311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tetraphenylphosphonium is an indicator of negative membrane potential in Candida albicans.
    Prasad R; Höfer M
    Biochim Biophys Acta; 1986 Oct; 861(2):377-80. PubMed ID: 3530329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.
    Laris PC; Pershadsingh HA; Johnstone RM
    Biochim Biophys Acta; 1976 Jun; 436(2):475-88. PubMed ID: 1276225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased accumulation of a lipophilic cation (tetraphenylphosphonium) in human embryo fibroblasts after infection with cytomegalovirus.
    Landini MP; Rugolo M
    J Gen Virol; 1984 Dec; 65 ( Pt 12)():2269-72. PubMed ID: 6096498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased accumulation of the lipophilic cation tetraphenylphosphonium+ by cyclopiazonic acid-treated renal epithelial cells.
    Riley RT; Norred WP; Dorner JW; Cole RJ
    J Toxicol Environ Health; 1985; 15(6):779-88. PubMed ID: 4057282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of (DL)-propranolol and Ca2+ on membrane potential and amino acid transport in Ehrlich ascites tumor cells.
    Pershadsingh HA; Johnstone RM; Laris PC
    Biochim Biophys Acta; 1978 May; 509(2):360-73. PubMed ID: 26402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of medium amino acids on ouabain-sensitive 86Rb+ -uptake and membrane-potential dependent [3H]tetraphenylphosphonium accumulation in Friend erythroleukemia cells.
    Schaefer A; Munter KH; Rüller S
    Eur J Cell Biol; 1988 Aug; 46(3):453-7. PubMed ID: 3181165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The plasma membrane electrical gradient (membrane potential) in Leishmania donovani promastigotes and amastigotes.
    Glaser TA; Utz GL; Mukkada AJ
    Mol Biochem Parasitol; 1992 Mar; 51(1):9-15. PubMed ID: 1533015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cation and harmaline interactions with Na(+)-independent dibasic amino acid transport system y+ in human erythrocytes and in erythrocytes from a primitive vertebrate the pacific hagfish (Eptatretus stouti).
    Young JD; Fincham DA; Harvey CM
    Biochim Biophys Acta; 1991 Nov; 1070(1):111-8. PubMed ID: 1751517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Na+-dependent hexose transport in cultured renal epithelial cells (LLC-PK1).
    Weiss ER; Amsler K; Dawson WD; Cook JS
    Ann N Y Acad Sci; 1985; 456():420-35. PubMed ID: 3004299
    [No Abstract]   [Full Text] [Related]  

  • 32. Hydrocortisone induction of system A amino acid transport in human fibroblasts from normal dermis and keloid.
    Russell SB; Russell JD; Trupin JS
    J Biol Chem; 1984 Sep; 259(18):11464-9. PubMed ID: 6470008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells.
    Davis S; Weiss MJ; Wong JR; Lampidis TJ; Chen LB
    J Biol Chem; 1985 Nov; 260(25):13844-50. PubMed ID: 4055760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complexity in valinomycin effects on amino acid transport.
    De Cespedes C; Christensen HN
    Biochim Biophys Acta; 1974 Feb; 339(1):139-45. PubMed ID: 4851127
    [No Abstract]   [Full Text] [Related]  

  • 35. Relationship of muscle growth in vitro to sodium pump activity and transmembrane potential.
    Vandenburgh HH; Lent CM
    J Cell Physiol; 1984 Jun; 119(3):283-95. PubMed ID: 6327731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a lipophilic cation to monitor electrical membrane potential in the intact rat lens.
    Cheng Q; Lichtstein D; Russell P; Zigler JS
    Invest Ophthalmol Vis Sci; 2000 Feb; 41(2):482-7. PubMed ID: 10670479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of pH on the cell membrane potential of primary cultured rat hepatocytes as measured with tetraphenylphosphonium and dimethyloxazolidine-2,4-dione.
    Ehrhardt V
    Biochim Biophys Acta; 1984 Aug; 775(2):182-8. PubMed ID: 6466666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathways of L-glutamic acid transport in cultured human fibroblasts.
    Dall'Asta V; Gazzola GC; Franchi-Gazzola R; Bussolati O; Longo N; Guidotti GG
    J Biol Chem; 1983 May; 258(10):6371-9. PubMed ID: 6133863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of energy coupling to the transport of amino acids by Staphylococcus aureus.
    Niven DF; Hamilton WA
    Eur J Biochem; 1974 May; 44(2):517-22. PubMed ID: 4838680
    [No Abstract]   [Full Text] [Related]  

  • 40. Accumulation of gentamicin by Staphylococcus aureus: the role of the transmembrane electrical potential.
    Gilman S; Saunders VA
    J Antimicrob Chemother; 1986 Jan; 17(1):37-44. PubMed ID: 3949638
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.