These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 39428902)
1. In Situ Molecular Reconfiguration of Pyrene Redox-Active Molecules for High-Performance Aqueous Organic Flow Batteries. Ge G; Li F; Yang M; Zhao Z; Hou G; Zhang C; Li X Adv Mater; 2024 Oct; ():e2412197. PubMed ID: 39428902 [TBL] [Abstract][Full Text] [Related]
3. Benzidine Derivatives: A Class of High Redox Potential Molecules for Aqueous Organic Flow Batteries. Liu X; Li T; Zhang C; Li X Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202307796. PubMed ID: 37389543 [TBL] [Abstract][Full Text] [Related]
4. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications. Yuan S; Huang X; Kong T; Yan L; Wang Y Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018 [TBL] [Abstract][Full Text] [Related]
5. Functioning Water-Insoluble Ferrocenes for Aqueous Organic Flow Battery via Host-Guest Inclusion. Li Y; Xu Z; Liu Y; Jin S; Fell EM; Wang B; Gordon RG; Aziz MJ; Yang Z; Xu T ChemSusChem; 2021 Jan; 14(2):745-752. PubMed ID: 33295127 [TBL] [Abstract][Full Text] [Related]
6. Designer Ferrocene Catholyte for Aqueous Organic Flow Batteries. Chen Q; Li Y; Liu Y; Sun P; Yang Z; Xu T ChemSusChem; 2021 Mar; 14(5):1295-1301. PubMed ID: 33200881 [TBL] [Abstract][Full Text] [Related]
7. Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries. Xu D; Zhang C; Zhen Y; Li Y ACS Appl Mater Interfaces; 2021 Aug; 13(30):35579-35584. PubMed ID: 34297540 [TBL] [Abstract][Full Text] [Related]
8. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Walser-Kuntz R; Yan Y; Sigman M; Sanford MS Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181 [TBL] [Abstract][Full Text] [Related]
9. A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery. Liu W; Zhao Z; Li T; Li S; Zhang H; Li X Sci Bull (Beijing); 2021 Mar; 66(5):457-463. PubMed ID: 36654183 [TBL] [Abstract][Full Text] [Related]
10. Enhancing organic cathodes of aqueous zinc-ion batteries Ma G; Ju Z; Xu X; Xu Y; Sun Y; Wang Y; Zhang G; Cai M; Pan L; Yu G Chem Sci; 2023 Nov; 14(44):12589-12597. PubMed ID: 38020381 [TBL] [Abstract][Full Text] [Related]
11. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes. Ye C; Wang A; Breakwell C; Tan R; Grazia Bezzu C; Hunter-Sellars E; Williams DR; Brandon NP; Klusener PAA; Kucernak AR; Jelfs KE; McKeown NB; Song Q Nat Commun; 2022 Jun; 13(1):3184. PubMed ID: 35676263 [TBL] [Abstract][Full Text] [Related]
12. Integration of Functional Groups to Enhance the Solubility and Stability of Viologen in Aqueous Organic Redox Flow Batteries. Hwang S; Oh M; Lee KJ; Jin CS; Park SK; Seo C; Yeon SH; Kim DH; Gueon D; Han YK; Shin KH ACS Appl Mater Interfaces; 2024 Jun; 16(22):28645-28654. PubMed ID: 38787734 [TBL] [Abstract][Full Text] [Related]
13. Fundamental properties of TEMPO-based catholytes for aqueous redox flow batteries: effects of substituent groups and electrolytes on electrochemical properties, solubilities and battery performance. Zhou W; Liu W; Qin M; Chen Z; Xu J; Cao J; Li J RSC Adv; 2020 Jun; 10(37):21839-21844. PubMed ID: 35516610 [TBL] [Abstract][Full Text] [Related]
14. Novel, Stable Catholyte for Aqueous Organic Redox Flow Batteries: Symmetric Cell Study of Hydroquinones with High Accessible Capacity. Yang X; Garcia SN; Janoschka T; Kónya D; Hager MD; Schubert US Molecules; 2021 Jun; 26(13):. PubMed ID: 34201612 [TBL] [Abstract][Full Text] [Related]
15. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species. Gao M; Salla M; Song Y; Wang Q Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142 [TBL] [Abstract][Full Text] [Related]
16. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. Kong T; Li J; Wang W; Zhou X; Xie Y; Ma J; Li X; Wang Y ACS Appl Mater Interfaces; 2024 Jan; 16(1):752-760. PubMed ID: 38132704 [TBL] [Abstract][Full Text] [Related]
17. Carboxyl-Substituted Organic Molecule Assembled with MXene Nanosheets for Boosting Aqueous Na Zhao Y; He J; Hu L; Yang J; Yan C; Shi M Small; 2023 Nov; 19(47):e2304182. PubMed ID: 37488687 [TBL] [Abstract][Full Text] [Related]
18. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures. Tracy JS; Horst ES; Roytman VA; Toste FD Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695 [TBL] [Abstract][Full Text] [Related]
19. Highly Soluble Dimethoxymethyl Tetrathiafulvalene with Excellent Stability for Non-Aqueous Redox Flow Batteries. Chen D; Shen H; Chen D; Chen N; Meng Y ACS Appl Mater Interfaces; 2023 Jul; 15(26):31491-31501. PubMed ID: 37341213 [TBL] [Abstract][Full Text] [Related]
20. Progress of Organic Electrodes in Aqueous Electrolyte for Energy Storage and Conversion. Huang J; Dong X; Guo Z; Wang Y Angew Chem Int Ed Engl; 2020 Oct; 59(42):18322-18333. PubMed ID: 32329546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]