These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Diffusioosmosis of electrolyte solutions in a fine capillary slit. Ma HC; Keh HJ J Colloid Interface Sci; 2006 Jun; 298(1):476-86. PubMed ID: 16364357 [TBL] [Abstract][Full Text] [Related]
4. Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers. Ma HC; Keh HJ J Colloid Interface Sci; 2007 Sep; 313(2):686-96. PubMed ID: 17570383 [TBL] [Abstract][Full Text] [Related]
5. Diffusioosmosis of electrolyte solutions in a fine capillary tube. Keh HJ; Ma HC Langmuir; 2007 Feb; 23(5):2879-86. PubMed ID: 17261044 [TBL] [Abstract][Full Text] [Related]
6. Diffusioosmosis of electrolyte solutions along a charged plane wall. Keh HJ; Ma HC Langmuir; 2005 Jun; 21(12):5461-7. PubMed ID: 15924476 [TBL] [Abstract][Full Text] [Related]
7. Diffusioosmotic and convective flows induced by a nonelectrolyte concentration gradient. Williams I; Lee S; Apriceno A; Sear RP; Battaglia G Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25263-25271. PubMed ID: 32989158 [TBL] [Abstract][Full Text] [Related]
9. Theory of diffusioosmosis in a charged nanochannel. Jing H; Das S Phys Chem Chem Phys; 2018 Apr; 20(15):10204-10212. PubMed ID: 29594300 [TBL] [Abstract][Full Text] [Related]
10. Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions. Buyukdagli S J Phys Chem B; 2020 Dec; 124(49):11299-11309. PubMed ID: 33231451 [TBL] [Abstract][Full Text] [Related]
11. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Buyukdagli S; Manghi M; Palmeri J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729 [TBL] [Abstract][Full Text] [Related]
12. Electro-osmosis at inhomogeneous charged surfaces: hydrodynamic versus electric friction. Kim YW; Netz RR J Chem Phys; 2006 Mar; 124(11):114709. PubMed ID: 16555912 [TBL] [Abstract][Full Text] [Related]
13. Drastic alteration of diffusioosmosis due to steric effects. Hoshyargar V; Ashrafizadeh SN; Sadeghi A Phys Chem Chem Phys; 2015 Nov; 17(43):29193-200. PubMed ID: 26465606 [TBL] [Abstract][Full Text] [Related]
14. Diffusiophoresis of a spherical particle in porous media. Sambamoorthy S; Chu HCW Soft Matter; 2023 Feb; 19(6):1131-1143. PubMed ID: 36683469 [TBL] [Abstract][Full Text] [Related]
15. Enhanced transport of ions by tuning surface properties of the nanochannel. Vinogradova OI; Silkina EF; Asmolov ES Phys Rev E; 2021 Sep; 104(3-2):035107. PubMed ID: 34654173 [TBL] [Abstract][Full Text] [Related]
16. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels. Sen T; Barisik M Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731 [TBL] [Abstract][Full Text] [Related]
17. Diffusioosmotic flows in slit nanochannels. Qian S; Das B; Luo X J Colloid Interface Sci; 2007 Nov; 315(2):721-30. PubMed ID: 17719599 [TBL] [Abstract][Full Text] [Related]
18. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes. Aburto CC; Nägele G J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555 [TBL] [Abstract][Full Text] [Related]
19. The non-dominance of counterions in charge-asymmetric electrolytes: non-monotonic precedence of electrostatic screening and local inversion of the electric field by multivalent coions. Guerrero-García GI; González-Tovar E; Quesada-Pérez M; Martín-Molina A Phys Chem Chem Phys; 2016 Aug; 18(31):21852-64. PubMed ID: 27435382 [TBL] [Abstract][Full Text] [Related]
20. Numerical Investigation of Diffusioosmotic Flow in a Tapered Nanochannel. Chanda S; Tsai PA Membranes (Basel); 2022 Apr; 12(5):. PubMed ID: 35629807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]