These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 39431241)

  • 1. Exploring the origins of switching dynamics in a multifunctional reservoir computer.
    Flynn A; Amann A
    Front Netw Physiol; 2024; 4():1451812. PubMed ID: 39431241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeing double with a multifunctional reservoir computer.
    Flynn A; Tsachouridis VA; Amann A
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37934181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry kills the square in a multifunctional reservoir computer.
    Flynn A; Herteux J; Tsachouridis VA; Räth C; Amann A
    Chaos; 2021 Jul; 31(7):073122. PubMed ID: 34340331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using a reservoir computer to learn chaotic attractors, with applications to chaos synchronization and cryptography.
    Antonik P; Gulina M; Pauwels J; Massar S
    Phys Rev E; 2018 Jul; 98(1-1):012215. PubMed ID: 30110744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctionality in a reservoir computer.
    Flynn A; Tsachouridis VA; Amann A
    Chaos; 2021 Jan; 31(1):013125. PubMed ID: 33754772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reservoir-computing based associative memory and itinerancy for complex dynamical attractors.
    Kong LW; Brewer GA; Lai YC
    Nat Commun; 2024 Jun; 15(1):4840. PubMed ID: 38844437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning continuous chaotic attractors with a reservoir computer.
    Smith LM; Kim JZ; Lu Z; Bassett DS
    Chaos; 2022 Jan; 32(1):011101. PubMed ID: 35105129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed-coexistence of periodic orbits and chaotic attractors in an inertial neural system with a nonmonotonic activation function.
    Song ZG; Xu J; Zhen B
    Math Biosci Eng; 2019 Jul; 16(6):6406-6425. PubMed ID: 31698569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics, multistability, and crisis analysis of a sine-circle nontwist map.
    Mugnaine M; Sales MR; Szezech JD; Viana RL
    Phys Rev E; 2022 Sep; 106(3-1):034203. PubMed ID: 36266788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-free inference of unseen attractors: Reconstructing phase space features from a single noisy trajectory using reservoir computing.
    Röhm A; Gauthier DJ; Fischer I
    Chaos; 2021 Oct; 31(10):103127. PubMed ID: 34717323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing spontaneous behavioral switching via chaotic itinerancy.
    Inoue K; Nakajima K; Kuniyoshi Y
    Sci Adv; 2020 Nov; 6(46):. PubMed ID: 33177080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Fractional-Order Chaotic System with Different Families of Hidden and Self-Excited Attractors.
    Munoz-Pacheco JM; Zambrano-Serrano E; Volos C; Jafari S; Kengne J; Rajagopal K
    Entropy (Basel); 2018 Jul; 20(8):. PubMed ID: 33265653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model.
    Li Y; Nara S
    Cogn Neurodyn; 2008 Mar; 2(1):39-48. PubMed ID: 19003472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic attractors that exist only in fractional-order case.
    Matouk AE
    J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD.
    Bollt E
    Chaos; 2021 Jan; 31(1):013108. PubMed ID: 33754755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systematic exploration of reservoir computing for forecasting complex spatiotemporal dynamics.
    Platt JA; Penny SG; Smith TA; Chen TC; Abarbanel HDI
    Neural Netw; 2022 Sep; 153():530-552. PubMed ID: 35839598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output.
    Shi L; Yan Y; Wang H; Wang S; Qu SX
    Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The connections between the frustrated chaos and the intermittency chaos in small Hopfield networks.
    Bersini H; Sener P
    Neural Netw; 2002 Dec; 15(10):1197-204. PubMed ID: 12425438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistable dynamics and attractors self-reproducing in a new hyperchaotic complex Lü system.
    Gu Y; Li G; Xu X; Song X; Wu S
    Chaos; 2023 Sep; 33(9):. PubMed ID: 37695926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.