These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39431308)

  • 1. Coalescence Mechanism Induced by Different Wetting States of Ti and Al Droplets on Rough Surfaces.
    Li Z; Zhao R; Li T; Liu W; Liu Q; Fu M; Tang J; Wu W; Li H
    Langmuir; 2024 Oct; 40(43):22835-22843. PubMed ID: 39431308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation.
    Lv X; Guan C; Han Z; Chen C; Sun Q
    Phys Chem Chem Phys; 2019 Oct; 21(38):21473-21484. PubMed ID: 31535116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces.
    Chen X; Patel RS; Weibel JA; Garimella SV
    Sci Rep; 2016 Jan; 6():18649. PubMed ID: 26725512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nano-pillared surfaces with an arrangement density gradient on droplet coalescence dynamics.
    Li T; Li M; Wang J; Li J; Duan Y; Li H
    Phys Chem Chem Phys; 2018 Oct; 20(38):24750-24758. PubMed ID: 30226230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The wetting characteristics of aluminum droplets on rough surfaces with molecular dynamics simulations.
    Guan C; Lv X; Han Z; Chen C
    Phys Chem Chem Phys; 2020 Jan; 22(4):2361-2371. PubMed ID: 31934698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting Transitions of Liquid Gallium Film on Nanopillar-Decorated Graphene Surfaces.
    Wang J; Li T; Li Y; Duan Y; Jiang Y; Arandiyan H; Li H
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Nanopillars on the Wetting State and Adhesion Characteristics of Molten Aluminum Droplets.
    He D; Rui Z; Lyu X; Zhuo J; Sun H; Dong Y
    Langmuir; 2023 Oct; 39(39):13986-13999. PubMed ID: 37725795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet attraction and coalescence mechanism on textured oil-impregnated surfaces.
    Xu H; Zhou Y; Daniel D; Herzog J; Wang X; Sick V; Adera S
    Nat Commun; 2023 Aug; 14(1):4901. PubMed ID: 37596277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces.
    Rykaczewski K; Paxson AT; Anand S; Chen X; Wang Z; Varanasi KK
    Langmuir; 2013 Jan; 29(3):881-91. PubMed ID: 23259731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of coalescence of plugs with a hydrophilic wetting layer induced by flow in a microfluidic chemistrode.
    Liu Y; Ismagilov RF
    Langmuir; 2009 Mar; 25(5):2854-9. PubMed ID: 19239191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior.
    Chen X; Wang P; Zhang D
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):38276-38284. PubMed ID: 31529958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaporation Dynamics of Macro- and Nanodroplets on Heated Hydrophilic Rough Substrates: The Effect of Roughness and Scale.
    Li Z; Liu B; Guo Y; Bi L; Hu H; Zeng T; Li R; Theodorakis PE
    Langmuir; 2024 Feb; ():. PubMed ID: 38321753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study.
    Gao S; Liao Q; Liu W; Liu Z
    Langmuir; 2017 Oct; 33(43):12379-12388. PubMed ID: 28980811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between shape, evaporation mode and mobility of small water droplets on nanorough fibres.
    Funk CS; Winzer B; Peukert W
    J Colloid Interface Sci; 2014 Mar; 417():171-9. PubMed ID: 24407674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.