These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39432720)
1. Shortest path counting in complex networks based on powers of the adjacency matrix. Tan D; Deng Y; Xiao Y; Wu J Chaos; 2024 Oct; 34(10):. PubMed ID: 39432720 [TBL] [Abstract][Full Text] [Related]
2. A Fast Algorithm for All-Pairs-Shortest-Paths Suitable for Neural Networks. Jing Z; Meister M Neural Comput; 2024 Nov; 36(12):2710-2733. PubMed ID: 39383024 [TBL] [Abstract][Full Text] [Related]
3. A fast algorithm for All-Pairs-Shortest-Paths suitable for neural networks. Jing Z; Meister M ArXiv; 2024 Jul; ():. PubMed ID: 39108292 [TBL] [Abstract][Full Text] [Related]
4. Power law of path multiplicity in complex networks. Deng Y; Wu J PNAS Nexus; 2024 Jun; 3(6):pgae228. PubMed ID: 38894880 [TBL] [Abstract][Full Text] [Related]
5. On the complexity of quantum link prediction in complex networks. Moutinho JP; Magano D; Coutinho B Sci Rep; 2024 Jan; 14(1):1026. PubMed ID: 38200071 [TBL] [Abstract][Full Text] [Related]
6. Shortest path counting in probabilistic biological networks. Ren Y; Ay A; Kahveci T BMC Bioinformatics; 2018 Dec; 19(1):465. PubMed ID: 30514202 [TBL] [Abstract][Full Text] [Related]
7. Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping. Kitsak M; Ganin A; Elmokashfi A; Cui H; Eisenberg DA; Alderson DL; Korkin D; Linkov I Nat Commun; 2023 Jan; 14(1):186. PubMed ID: 36650144 [TBL] [Abstract][Full Text] [Related]
8. Estimation and update of betweenness centrality with progressive algorithm and shortest paths approximation. Xiang N; Wang Q; You M Sci Rep; 2023 Oct; 13(1):17110. PubMed ID: 37816806 [TBL] [Abstract][Full Text] [Related]
9. Shortest Paths in Multiplex Networks. Ghariblou S; Salehi M; Magnani M; Jalili M Sci Rep; 2017 May; 7(1):2142. PubMed ID: 28526822 [TBL] [Abstract][Full Text] [Related]
11. Dynamic algorithms for the shortest path routing problem: learning automata-based solutions. Misra S; Oommen BJ IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1179-92. PubMed ID: 16366244 [TBL] [Abstract][Full Text] [Related]
12. The approximability of shortest path-based graph orientations of protein-protein interaction networks. Blokh D; Segev D; Sharan R J Comput Biol; 2013 Dec; 20(12):945-57. PubMed ID: 24073924 [TBL] [Abstract][Full Text] [Related]
13. Fast computing betweenness centrality with virtual nodes on large sparse networks. Yang J; Chen Y PLoS One; 2011; 6(7):e22557. PubMed ID: 21818337 [TBL] [Abstract][Full Text] [Related]
14. Computing paths and cycles in biological interaction graphs. Klamt S; von Kamp A BMC Bioinformatics; 2009 Jun; 10():181. PubMed ID: 19527491 [TBL] [Abstract][Full Text] [Related]
16. Distributed algorithms from arboreal ants for the shortest path problem. Garg S; Shiragur K; Gordon DM; Charikar M Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2207959120. PubMed ID: 36716366 [TBL] [Abstract][Full Text] [Related]
17. The ultrametric backbone is the union of all minimum spanning forests. Rozum JC; Rocha LM J Phys Complex; 2024 Sep; 5(3):035009. PubMed ID: 39131403 [TBL] [Abstract][Full Text] [Related]
18. Shortest path based network analysis to characterize cognitive load states of human brain using EEG based functional brain networks. Thilaga M; Ramasamy V; Nadarajan R; Nandagopal D J Integr Neurosci; 2018; 17(2):133-148. PubMed ID: 28968248 [TBL] [Abstract][Full Text] [Related]
19. Most relevant point query on road networks. Zhang Z; Yang S; Qin Y; Yang Z; Huang Y; Zhou X Neural Comput Appl; 2022 Jun; ():1-11. PubMed ID: 35789916 [TBL] [Abstract][Full Text] [Related]