BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3943528)

  • 21. Characterization of Ca2+ uptake and release by vesicles of skeletal-muscle sarcoplasmic reticulum.
    McWhirter JM; Gould GW; East JM; Lee AG
    Biochem J; 1987 Aug; 245(3):731-8. PubMed ID: 3663188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stoichiometries of calcium and strontium transport coupled to ATP and acetyl phosphate hydrolysis by skeletal sarcoplasmic reticulum.
    Berman MC; King SB
    Biochim Biophys Acta; 1990 Nov; 1029(2):235-40. PubMed ID: 2245209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP.
    Vieyra A; Mintz E; Lowe J; Guillain F
    Biochim Biophys Acta; 2004 Dec; 1667(2):103-13. PubMed ID: 15581845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of nucleotides ATP and ADP to sarcoplasmic reticulm: study by rate of dialysis.
    Tenu JP; Ghelis C; Yon J; CHevallier J
    Biochimie; 1976; 58(5):513-9. PubMed ID: 953055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ translocation across sarcoplasmic reticulum ATPase randomizes the two transported ions.
    Canet D; Forge V; Guillain F; Mintz E
    J Biol Chem; 1996 Aug; 271(34):20566-72. PubMed ID: 8702801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of the calcium-transporting adenosinetriphosphatase by lanthanum ATP: rapid phosphoryl transfer following a rate-limiting conformational change.
    Hanel AM; Jencks WP
    Biochemistry; 1990 May; 29(21):5210-20. PubMed ID: 2143081
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the phosphoenzyme that is involved in the Ca2+ -Ca2+ exchange catalyzed by the Ca2+ -ATPase of sarcoplasmic reticulum vesicles.
    Inao S; Kanazawa T
    Biochim Biophys Acta; 1986 May; 857(1):28-37. PubMed ID: 2938630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rate of calcium release and ATP synthesis in sarcoplasmic reticulum vesicles.
    Sande-Lemos MP; De Meis L
    Eur J Biochem; 1988 Jan; 171(1-2):273-8. PubMed ID: 2448140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. There is only one phosphoenzyme intermediate with bound calcium on the reaction pathway of the sarcoplasmic reticulum calcium ATPase.
    Myung J; Jencks WP
    Biochemistry; 1995 Mar; 34(9):3077-83. PubMed ID: 7893720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of temperature on the reversal of the calcium ion pump in sarcoplasmic reticulum.
    Vale MG; Carvalho AP
    Biochem J; 1980 Feb; 186(2):461-7. PubMed ID: 7378062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of solubilization on adenosine 5'-triphosphate induced calcium release from purified sarcoplasmic reticulum calcium adenosinetriphosphatase.
    Dean WL; Gray RD
    Biochemistry; 1983 Jan; 22(2):515-9. PubMed ID: 6218822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of endogenous calcium transport inhibitor from heart muscle on the active calcium uptake and passive calcium release properties of sarcoplasmic reticulum.
    Narayanan N; Bedard P; Waraich TS
    Can J Physiol Pharmacol; 1989 Sep; 67(9):999-1006. PubMed ID: 2598137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of adenosine triphosphate during release of intravesicular and membrane-bound calcium ions from passively loaded sarcoplasmic reticulum.
    Vale GP; Osório R; Castro E; Carvalho AP
    Biochem J; 1976 May; 156(2):239-44. PubMed ID: 821477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depolarization-induced calcium release from sarcoplasmic reticulum fragments. I. Release of calcium taken up upon using ATP.
    Kasai M; Miyamoto H
    J Biochem; 1976 May; 79(5):1053-66. PubMed ID: 8434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation.
    Froehlich JP; Heller PF
    Biochemistry; 1985 Jan; 24(1):126-36. PubMed ID: 3158340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum.
    Gould GW; McWhirter JM; East JM; Lee AG
    Biochem J; 1987 Aug; 245(3):739-49. PubMed ID: 2959279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle.
    Suko J; Winkler F; Scharinger B; Hellmann G
    Biochim Biophys Acta; 1976 Sep; 443(3):571-86. PubMed ID: 134747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.