These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 39436264)

  • 1. Chemical strategies for antisense antibiotics.
    Pals MJ; Lindberg A; Velema WA
    Chem Soc Rev; 2024 Oct; ():. PubMed ID: 39436264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development.
    Pavlova N; Traykovska M; Penchovsky R
    Antibiotics (Basel); 2023 Nov; 12(11):. PubMed ID: 37998809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of
    Traykovska M; Penchovsky R
    ACS Synth Biol; 2022 May; 11(5):1845-1855. PubMed ID: 35440139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rationally designing antisense therapy to keep up with evolving bacterial resistance.
    Kotil S; Jakobsson E
    PLoS One; 2019; 14(1):e0209894. PubMed ID: 30645595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catechol-Siderophore Mimics Convey Nucleic Acid Therapeutics into Bacteria.
    Pals MJ; Wijnberg L; Yildiz Ç; Velema WA
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202402405. PubMed ID: 38407513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting bacterial RNA polymerase: promises for future antisense antibiotics development.
    Bai H; Zhou Y; Hou Z; Xue X; Meng J; Luo X
    Infect Disord Drug Targets; 2011 Apr; 11(2):175-87. PubMed ID: 21470098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting bacterial RNA polymerase σ70 for development of broad-spectrum antisense antibacterials.
    Bai H; Bo X; Wang S
    Recent Pat Antiinfect Drug Discov; 2012 Dec; 7(3):213-22. PubMed ID: 22742395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria.
    Ji Y; Lei T
    Sci Prog; 2013; 96(Pt 1):43-60. PubMed ID: 23738437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Peptide Nucleic Acids as Antibacterial Agents.
    Chen W; Dong B; Liu W; Liu Z
    Curr Med Chem; 2021; 28(6):1104-1125. PubMed ID: 32484766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antisense antibiotics: a brief review of novel target discovery and delivery.
    Bai H; Xue X; Hou Z; Zhou Y; Meng J; Luo X
    Curr Drug Discov Technol; 2010 Jun; 7(2):76-85. PubMed ID: 20836761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense antibacterial compounds.
    Pifer R; Greenberg DE
    Transl Res; 2020 Sep; 223():89-106. PubMed ID: 32522669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of Cell-Penetrating-Peptides in Antibacterial Agents.
    Chen H; Battalapalli D; Draz MS; Zhang P; Ruan Z
    Curr Med Chem; 2021; 28(29):5896-5925. PubMed ID: 34225605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation into the Potential of Targeting
    Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies.
    Zhang F; Cheng W
    Antibiotics (Basel); 2022 Sep; 11(9):. PubMed ID: 36139994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey.
    Oberemok VV; Laikova KV; Repetskaya AI; Kenyo IM; Gorlov MV; Kasich IN; Krasnodubets AM; Gal'chinsky NV; Fomochkina II; Zaitsev AS; Bekirova VV; Seidosmanova EE; Dydik KI; Meshcheryakova AO; Nazarov SA; Smagliy NN; Chelengerova EL; Kulanova AA; Deri K; Subbotkin MV; Useinov RZ; Shumskykh MN; Kubyshkin AV
    Molecules; 2018 May; 23(6):. PubMed ID: 29844255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in therapeutic bacterial antisense biotechnology.
    Hegarty JP; Stewart DB
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1055-1065. PubMed ID: 29209794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Downregulation of yidC in Escherichia coli by antisense RNA expression results in sensitization to antibacterial essential oils eugenol and carvacrol.
    Patil SD; Sharma R; Srivastava S; Navani NK; Pathania R
    PLoS One; 2013; 8(3):e57370. PubMed ID: 23469191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current landscape in the discovery of novel antibacterial agents.
    Vila J; Moreno-Morales J; Ballesté-Delpierre C
    Clin Microbiol Infect; 2020 May; 26(5):596-603. PubMed ID: 31574341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Current Status of Antisense Gene Therapies for Bacteria-caused Diseases Challenges and Opportunities.
    Li J; Liang X; Wang F; Wang J; Ding F
    Curr Pharm Des; 2023; 29(4):272-282. PubMed ID: 36654470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial antisense.
    Geller BL
    Curr Opin Mol Ther; 2005 Apr; 7(2):109-13. PubMed ID: 15844617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.