These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 39439942)
1. Classification, biology and entomopathogenic fungi-based management and their mode of action against Vivekanandhan P; Swathy K; Sarayut P; Patcharin K Front Microbiol; 2024; 15():1443651. PubMed ID: 39439942 [TBL] [Abstract][Full Text] [Related]
2. Insect-fungal-interactions: A detailed review on entomopathogenic fungi pathogenicity to combat insect pests. Islam W; Adnan M; Shabbir A; Naveed H; Abubakar YS; Qasim M; Tayyab M; Noman A; Nisar MS; Khan KA; Ali H Microb Pathog; 2021 Oct; 159():105122. PubMed ID: 34352375 [TBL] [Abstract][Full Text] [Related]
3. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
4. Recent Advancements in Pathogenic Mechanisms, Applications and Strategies for Entomopathogenic Fungi in Mosquito Biocontrol. Qin Y; Liu X; Peng G; Xia Y; Cao Y J Fungi (Basel); 2023 Jul; 9(7):. PubMed ID: 37504734 [TBL] [Abstract][Full Text] [Related]
5. Entomopathogenic fungi in crops protection with an emphasis on bioactive metabolites and biological activities. Shahbaz M; Palaniveloo K; Tan YS; Palasuberniam P; Ilyas N; Wiart C; Seelan JSS World J Microbiol Biotechnol; 2024 May; 40(7):217. PubMed ID: 38806748 [TBL] [Abstract][Full Text] [Related]
6. A life-and-death struggle: interaction of insects with entomopathogenic fungi across various infection stages. Ma M; Luo J; Li C; Eleftherianos I; Zhang W; Xu L Front Immunol; 2023; 14():1329843. PubMed ID: 38259477 [TBL] [Abstract][Full Text] [Related]
7. Combined application of entomopathogenic nematodes and fungi against fruit flies, Bactrocera zonata and B. dorsalis (Diptera: Tephritidae): laboratory cups to field study. Wakil W; Usman M; Piñero JC; Wu S; Toews MD; Shapiro-Ilan DI Pest Manag Sci; 2022 Jul; 78(7):2779-2791. PubMed ID: 35365867 [TBL] [Abstract][Full Text] [Related]
8. Isolation and Selection of Entomopathogenic Fungi from Soil Samples and Evaluation of Fungal Virulence against Insect Pests. Liu YC; Ni NT; Chang JC; Li YH; Lee MR; Kim JS; Nai YS J Vis Exp; 2021 Sep; (175):. PubMed ID: 34661569 [TBL] [Abstract][Full Text] [Related]
9. Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii. Cuthbertson AG; Audsley N Insects; 2016 Jun; 7(2):. PubMed ID: 27294962 [TBL] [Abstract][Full Text] [Related]
10. Interactions between Entomopathogenic Fungi and Entomopathogenic Nematodes. Půža V; Tarasco E Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677455 [TBL] [Abstract][Full Text] [Related]
11. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. Liu D; Smagghe G; Liu TX J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233286 [TBL] [Abstract][Full Text] [Related]
13. Model Application of Entomopathogenic Fungi as Alternatives to Chemical Pesticides: Prospects, Challenges, and Insights for Next-Generation Sustainable Agriculture. Bamisile BS; Akutse KS; Siddiqui JA; Xu Y Front Plant Sci; 2021; 12():741804. PubMed ID: 34659310 [TBL] [Abstract][Full Text] [Related]
14. Mapping the global distribution of invasive pest Nair RR; Peterson AT PeerJ; 2023; 11():e15222. PubMed ID: 37123003 [TBL] [Abstract][Full Text] [Related]
15. Identification of entomopathogenic bacteria associated with the invasive pest Drosophila suzukii in infested areas of Germany. Hiebert N; Carrau T; Bartling M; Vilcinskas A; Lee KZ J Invertebr Pathol; 2020 Jun; 173():107389. PubMed ID: 32348777 [TBL] [Abstract][Full Text] [Related]
16. Natural Parasitism Influences Biological Control Strategies Against Both Global Invasive Pests Ceratitis capitata (Diptera: Tephritidae) and Drosophila suzukii (Diptera: Drosophilidae), and the Neotropical-Native Pest Anastrepha fraterculus (Diptera: Tephritidae). Biancheri MJB; Suárez L; Kirschbaum DS; Garcia FRM; Funes CF; Ovruski SM Environ Entomol; 2022 Dec; 51(6):1120-1135. PubMed ID: 36287246 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of control for the management of four pest species (Rhagoletis cerasi L., Ceratitis capitata Wied. (Diptera: Tephritidae), Drosophila suzukii (Matsumura) and Zaprionus indianus (Gupta) (Diptera: Drosophilidae)) in organic cherry-growing area. Özbek Çatal B; Çalişkan Keçe AF; Amangeldİ Z; Ulusoy MR Pest Manag Sci; 2023 Feb; 79(2):520-525. PubMed ID: 36264596 [TBL] [Abstract][Full Text] [Related]
18. Pathogenicity and Virulence of Different Concentrations of Brazilian Isolates of Entomopathogenic Nematodes Against Drosophila suzukii. Dias SC; de Brida AL; Jean-Baptiste MC; Leite LG; Ovruski SM; Garcia FRM Neotrop Entomol; 2023 Dec; 52(6):986-992. PubMed ID: 37495767 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control. Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923 [TBL] [Abstract][Full Text] [Related]
20. Subcellular biochemistry and biology of filamentous entomopathogenic fungi. Ying SH Adv Appl Microbiol; 2024; 129():35-58. PubMed ID: 39389707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]