BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 3944054)

  • 1. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Sublett JE
    J Bacteriol; 1986 Feb; 165(2):379-85. PubMed ID: 3944054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis.
    Hatch TP; Miceli M; Silverman JA
    J Bacteriol; 1985 Jun; 162(3):938-42. PubMed ID: 3997784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC.
    Everett KD; Hatch TP
    J Bacteriol; 1991 Jun; 173(12):3821-30. PubMed ID: 2050637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis.
    Newhall WJ
    Infect Immun; 1987 Jan; 55(1):162-8. PubMed ID: 3793227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae?
    Hackstadt T; Todd WJ; Caldwell HD
    J Bacteriol; 1985 Jan; 161(1):25-31. PubMed ID: 2857160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Chlamydia psittaci subfraction and subunit preparations for their protective capacities.
    Sandbulte J; TerWee J; Wigington K; Sabara M
    Vet Microbiol; 1996 Feb; 48(3-4):269-82. PubMed ID: 9054123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of genus-specific epitopes on the outer membrane complexes of Chlamydia trachomatis and Chlamydia psittaci immunotypes 1 and 2.
    Mondesire RR; Maclean IW; Shewen PE; Winston SE
    Infect Immun; 1989 Sep; 57(9):2914-8. PubMed ID: 2474507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-level expression of Chlamydia psittaci major outer membrane protein in COS cells and in skeletal muscles of turkeys.
    Vanrompay D; Cox E; Mast J; Goddeeris B; Volckaert G
    Infect Immun; 1998 Nov; 66(11):5494-500. PubMed ID: 9784562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of neutralization of Chlamydia trachomatis infection by high avidity monoclonal antibodies to surface-exposed major outer membrane protein variable domain IV.
    Degn LLT; Bech D; Christiansen G; Birkelund S
    Mol Immunol; 2023 Nov; 163():163-173. PubMed ID: 37801817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virulence of feline Chlamydia psittaci in mice is not a function of the major outer membrane protein (MOMP).
    May SW; Kelling CL; Sabara M; Sandbulte J
    Vet Microbiol; 1996 Dec; 53(3-4):355-68. PubMed ID: 9008346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic AMP inhibits protein synthesis in Chlamydia trachomatis at a transcriptional level.
    Kaul R; Tao S; Wenman WM
    Biochim Biophys Acta; 1990 Jun; 1053(1):106-12. PubMed ID: 2163685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation of immune determinants of outer membrane proteins of Chlamydia psittaci strain guinea pig inclusion conjunctivitis.
    Westbay TD; Dascher CC; Hsia RC; Bavoil PM; Zauderer M
    Infect Immun; 1994 Dec; 62(12):5614-23. PubMed ID: 7525489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the disulfide bonds and free cysteine residues of the Chlamydia trachomatis mouse pneumonitis major outer membrane protein.
    Yen TY; Pal S; de la Maza LM
    Biochemistry; 2005 Apr; 44(16):6250-6. PubMed ID: 15835913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms.
    Allan I; Hatch TP; Pearce JH
    J Gen Microbiol; 1985 Dec; 131(12):3171-7. PubMed ID: 3831232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the envelope proteins of Chlamydia pneumoniae, Chlamydia trachomatis, and Chlamydia psittaci shown by two-dimensional gel electrophoresis.
    Moroni A; Pavan G; Donati M; Cevenini R
    Arch Microbiol; 1996 Mar; 165(3):164-8. PubMed ID: 8599533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of polymorphic outer membrane proteins of Chlamydia psittaci 6BC.
    Tanzer RJ; Longbottom D; Hatch TP
    Infect Immun; 2001 Apr; 69(4):2428-34. PubMed ID: 11254603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical cross-linking of Chlamydia trachomatis.
    Birkelund S; Lundemose AG; Christiansen G
    Infect Immun; 1988 Mar; 56(3):654-9. PubMed ID: 2449399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and antigenic analysis of Chlamydia pneumoniae.
    Campbell LA; Kuo CC; Grayston JT
    Infect Immun; 1990 Jan; 58(1):93-7. PubMed ID: 2294060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and sequence analysis of the major outer membrane protein genes of two Chlamydia psittaci strains.
    Zhang YX; Morrison SG; Caldwell HD; Baehr W
    Infect Immun; 1989 May; 57(5):1621-5. PubMed ID: 2707861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.