BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3944101)

  • 1. Interactions between diphtheria toxin entry and anion transport in Vero cells. II. Inhibition of anion antiport by diphtheria toxin.
    Olsnes S; Sandvig K
    J Biol Chem; 1986 Feb; 261(4):1553-61. PubMed ID: 3944101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between diphtheria toxin entry and anion transport in Vero cells. I. Anion antiport in Vero cells.
    Olsnes S; Sandvig K
    J Biol Chem; 1986 Feb; 261(4):1542-52. PubMed ID: 3944100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between diphtheria toxin entry and anion transport in Vero cells. IV. Evidence that entry of diphtheria toxin is dependent on efficient anion transport.
    Sandvig K; Olsnes S
    J Biol Chem; 1986 Feb; 261(4):1570-5. PubMed ID: 2418015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between diphtheria toxin entry and anion transport in vero cells. III. Effect on toxin binding and anion transport of tumor-promoting phorbol esters, vanadate, fluoride, and salicylate.
    Olsnes S; Carvajal E; Sandvig K
    J Biol Chem; 1986 Feb; 261(4):1562-9. PubMed ID: 3632976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion requirement and effect of anion transport inhibitors on the response of vero cells to diphtheria toxin and modeccin.
    Sandvig K; Olsnes S
    J Cell Physiol; 1984 Apr; 119(1):7-14. PubMed ID: 6707104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-regulated anion antiport in nucleated mammalian cells.
    Olsnes S; Tønnessen TI; Sandvig K
    J Cell Biol; 1986 Mar; 102(3):967-71. PubMed ID: 3949885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of anions in low pH-induced translocation of diphtheria toxin.
    Moskaug JO; Sandvig K; Olsnes S
    J Biol Chem; 1989 Jul; 264(19):11367-72. PubMed ID: 2500440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule.
    Sandvig K; Olsnes S
    J Biol Chem; 1981 Sep; 256(17):9068-76. PubMed ID: 7263699
    [No Abstract]   [Full Text] [Related]  

  • 9. Requirement of a transmembrane pH gradient for the entry of diphtheria toxin into cells at low pH.
    Sandvig K; Tønnessen TI; Sand O; Olsnes S
    J Biol Chem; 1986 Sep; 261(25):11639-44. PubMed ID: 3745160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations.
    Sandvig K; Olsnes S
    J Biol Chem; 1988 Sep; 263(25):12352-9. PubMed ID: 2457582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of protein synthesis inactivation by diphtheria toxin in toxin-resistant L cells. Evidence for a low efficiency receptor-mediated transport system.
    Heagy WE; Neville DM
    J Biol Chem; 1981 Dec; 256(24):12788-92. PubMed ID: 7309737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding properties of diphtheria toxin to cells are altered by mutation in the fragment A domain.
    Mekada E; Uchida T
    J Biol Chem; 1985 Oct; 260(22):12148-53. PubMed ID: 4044590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of chimeric toxins prepared from the constituent polypeptides of diphtheria toxin and ricin. Evidence for entry of ricin A-chain via the diphtheria toxin pathway.
    Sundan A; Olsnes S; Sandvig K; Pihl A
    J Biol Chem; 1982 Aug; 257(16):9733-9. PubMed ID: 7107588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of potassium depletion of cells on their sensitivity to diphtheria toxin and pseudomonas toxin.
    Sandvig K; Sundan A; Olsnes S
    J Cell Physiol; 1985 Jul; 124(1):54-60. PubMed ID: 3930519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytotic vesicles.
    Sandvig K; Olsnes S
    J Biol Chem; 1982 Jul; 257(13):7504-13. PubMed ID: 7085634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entry of diphtheria toxin linked to concanavalin A into primate and murine cells.
    Guillemot JC; Sundan A; Olsnes S; Sandvig K
    J Cell Physiol; 1985 Feb; 122(2):193-9. PubMed ID: 3844014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective inhibition of sodium-linked and sodium-independent bicarbonate/chloride antiport in Vero cells.
    Madshus IH; Olsnes S
    J Biol Chem; 1987 Jun; 262(16):7486-91. PubMed ID: 3584123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monensin blocks the transport of diphtheria toxin to the cell cytoplasm.
    Marnell MH; Stookey M; Draper RK
    J Cell Biol; 1982 Apr; 93(1):57-62. PubMed ID: 7068760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entry of diphtheria toxin-protein A chimeras into cells.
    Madshus IH; Stenmark H; Sandvig K; Olsnes S
    J Biol Chem; 1991 Sep; 266(26):17446-53. PubMed ID: 1894632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane.
    Marnell MH; Shia SP; Stookey M; Draper RK
    Infect Immun; 1984 Apr; 44(1):145-50. PubMed ID: 6706404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.