These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3944134)

  • 1. The structural bases for the unique ligand binding properties of Glycera dibranchiata hemoglobins. A resonance Raman study.
    Carson SD; Constantinidis I; Mintorovitch J; Satterlee JD; Ondrias MR
    J Biol Chem; 1986 Feb; 261(5):2246-55. PubMed ID: 3944134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resonance Raman study of ligand binding geometry in Glycera dibranchiata carbonmonoxyhemoglobin.
    Carson SD; Constantinidis I; Satterlee JD; Ondrias MR
    J Biol Chem; 1985 Jul; 260(15):8741-5. PubMed ID: 4019451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural consequences of heme isomerism in monomeric hemoglobins from Glycera dibranchiata.
    Cooke RM; Wright PE
    Eur J Biochem; 1987 Jul; 166(2):409-14. PubMed ID: 3609018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of high pressure upon ligated and deoxyhemoglobins and myoglobin. An optical spectroscopic study.
    Alden RG; Satterlee JD; Mintorovitch J; Constantinidis I; Ondrias MR; Swanson BI
    J Biol Chem; 1989 Feb; 264(4):1933-40. PubMed ID: 2914887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryogenic stabilization of myoglobin photoproducts.
    Sassaroli M; Dasgupta S; Rousseau DL
    J Biol Chem; 1986 Oct; 261(29):13704-13. PubMed ID: 3759989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR studies of the heme pocket conformations of monomeric hemoglobins from Glycera dibranchiata. Implications for ligand binding.
    Cooke RM; Dalvit C; Narula SS; Wright PE
    Eur J Biochem; 1987 Jul; 166(2):399-408. PubMed ID: 3609017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous pH dependence of the heme-bound carbon monoxide spectroscopic properties in the Glycera dibranchiata monomer hemoglobin fraction compared to vertebrate hemoglobins.
    Satterlee JD
    Biochim Biophys Acta; 1984 Dec; 791(3):384-94. PubMed ID: 6518167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecies variations in the transient heme species generated subsequent to CO photolysis from hemoglobins.
    Carson SD; Wells CA; Findsen EW; Friedman JM; Ondrias MR
    J Biol Chem; 1987 Mar; 262(7):3044-51. PubMed ID: 3818632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV.
    Park HJ; Yang C; Treff N; Satterlee JD; Kang C
    Proteins; 2002 Oct; 49(1):49-60. PubMed ID: 12211015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional implications of the proximal hydrogen-bonding network in myoglobin: a resonance Raman and kinetic study of Leu89, Ser92, His97, and F-helix swap mutants.
    Peterson ES; Friedman JM; Chien EY; Sligar SG
    Biochemistry; 1998 Sep; 37(35):12301-19. PubMed ID: 9724545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the geminate recombination kinetics of several monomeric heme proteins.
    Rohlfs RJ; Olson JS; Gibson QH
    J Biol Chem; 1988 Feb; 263(4):1803-13. PubMed ID: 3338995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligation and quaternary structure induced changes in the heme pocket of hemoglobin: a transient resonance Raman study.
    Friedman JM; Stepnoski RA; Stavola M; Ondrias MR; Cone RL
    Biochemistry; 1982 Apr; 21(9):2022-8. PubMed ID: 7093226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational disorder of the distal leucine in monomeric Glycera hemoglobins and implications for oxygen binding.
    Cooke RM; Wright PE
    FEBS Lett; 1985 Aug; 187(2):219-23. PubMed ID: 4018261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron ligand recognition by monomeric hemoglobins.
    Stephanos JJ; Farina SA; Addison AW
    Biochim Biophys Acta; 1996 Jul; 1295(2):209-21. PubMed ID: 8695648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A photolysis-triggered heme ligand switch in H93G myoglobin.
    Franzen S; Bailey J; Dyer RB; Woodruff WH; Hu RB; Thomas MR; Boxer SG
    Biochemistry; 2001 May; 40(17):5299-305. PubMed ID: 11318654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution studies on heme proteins. Circular dichroism and optical rotation of Glycera dibranchiata hemoglobins.
    O'Connor ER; Harrington JP; Herskovits TT
    Biochim Biophys Acta; 1980 Aug; 624(2):346-62. PubMed ID: 6251898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isoelectric focusing purity criteria and 1H NMR detectable spectroscopic heterogeneity in the major isolated monomer hemoglobins from Glycera dibranchiata.
    Constantinidis I; Satterlee JD
    Biochemistry; 1987 Dec; 26(24):7779-86. PubMed ID: 3427104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species.
    Franzen S; Bohn B; Poyart C; Martin JL
    Biochemistry; 1995 Jan; 34(4):1224-37. PubMed ID: 7827072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Raman study of hemoglobin: structural dependence of the iron-histidine linkage.
    Friedman JM; Rousseau DL; Ondrias MR; Stepnoski RA
    Science; 1982 Dec; 218(4578):1244-6. PubMed ID: 7146910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible allosteric communication pathway identified through a resonance Raman study of four beta37 mutants of human hemoglobin A.
    Peterson ES; Friedman JM
    Biochemistry; 1998 Mar; 37(13):4346-57. PubMed ID: 9521755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.