These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
587 related articles for article (PubMed ID: 3944217)
21. Double-tracer autoradiographic study of protein synthesis and glucose consumption in rats with focal cerebral ischemia. Christensen T; Balchen T; Bruhn T; Diemer NH Neurol Res; 1999 Oct; 21(7):687-94. PubMed ID: 10555193 [TBL] [Abstract][Full Text] [Related]
22. Quantitative measurement of local cerebral metabolic rate for glucose utilizing tritiated 2-deoxyglucose. Alexander GM; Schwartzman RJ; Bell RD; Yu J; Renthal A Brain Res; 1981 Oct; 223(1):59-67. PubMed ID: 7284810 [TBL] [Abstract][Full Text] [Related]
23. Focal ischemia of the rat brain: autoradiographic determination of cerebral glucose utilization, glucose content, and blood flow. Nedergaard M; Gjedde A; Diemer NH J Cereb Blood Flow Metab; 1986 Aug; 6(4):414-24. PubMed ID: 3733901 [TBL] [Abstract][Full Text] [Related]
24. Differential quenching and limits of resolution in autoradiograms of brain tissue labeled with 3H-, 125I- and 14C-compounds. Lidow MS; Goldman-Rakic PS; Rakic P; Gallager DW Brain Res; 1988 Aug; 459(1):105-19. PubMed ID: 3167570 [TBL] [Abstract][Full Text] [Related]
25. Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. Adachi K; Cruz NF; Sokoloff L; Dienel GA J Cereb Blood Flow Metab; 1995 Jan; 15(1):97-110. PubMed ID: 7798343 [TBL] [Abstract][Full Text] [Related]
26. Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic [14C]iodoantipyrine technique in freely moving rats. Nehlig A; Pereira de Vasconcelos A; Boyet S J Cereb Blood Flow Metab; 1989 Oct; 9(5):579-88. PubMed ID: 2777930 [TBL] [Abstract][Full Text] [Related]
27. Validation of the triple-tracer autoradiographic method in rats. Nakai H; Diksic M; Yamamoto YL Stroke; 1988 Jun; 19(6):758-63. PubMed ID: 3376168 [TBL] [Abstract][Full Text] [Related]
28. Measurement of local cerebral blood flow with iodo [14C] antipyrine. Sakurada O; Kennedy C; Jehle J; Brown JD; Carbin GL; Sokoloff L Am J Physiol; 1978 Jan; 234(1):H59-66. PubMed ID: 623275 [TBL] [Abstract][Full Text] [Related]
29. High resolution autoradiography at the regional topographic level with [14C]2-deoxyglucose and [3H]2-deoxyglucose. Duncan GE; Stumpf WE; Pilgrim C; Breese GR J Neurosci Methods; 1987 Jun; 20(2):105-13. PubMed ID: 3600030 [TBL] [Abstract][Full Text] [Related]
30. Regional cerebral blood flow and glucose utilization in spontaneously epileptic EL mice. Hosokawa C; Ochi H; Yamagami S; Yamada R J Nucl Med; 1997 Apr; 38(4):613-6. PubMed ID: 9098212 [TBL] [Abstract][Full Text] [Related]
31. Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. Dienel GA; Cruz NF; Sokoloff L J Cereb Blood Flow Metab; 1993 Mar; 13(2):315-27. PubMed ID: 8436625 [TBL] [Abstract][Full Text] [Related]
32. Stimulated glucose uptake in the ischemic border zone: its dependence on glucose uptake in the normally perfused area. Yamane Y; Ishide N; Kagaya Y; Takeyama D; Shiba N; Chida M; Nozaki T; Takahashi T; Ido T; Shirato K J Nucl Med; 1997 Oct; 38(10):1515-21. PubMed ID: 9379185 [TBL] [Abstract][Full Text] [Related]
33. Regional changes in brain 2-14C-deoxyglucose uptake induced by convulsant and non-convulsant doses of lindane. Sanfeliu C; Solà C; Camón L; Martínez E; Rodríguez-Farré E Neurotoxicology; 1989; 10(4):727-42. PubMed ID: 2483996 [TBL] [Abstract][Full Text] [Related]
34. Uncoupling of cerebral blood flow and metabolism after cerebral contusion in the rat. Richards HK; Simac S; Piechnik S; Pickard JD J Cereb Blood Flow Metab; 2001 Jul; 21(7):779-81. PubMed ID: 11435789 [TBL] [Abstract][Full Text] [Related]
35. Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion. Tamura A; Graham DI; McCulloch J; Teasdale GM J Cereb Blood Flow Metab; 1981; 1(1):61-9. PubMed ID: 7328139 [TBL] [Abstract][Full Text] [Related]
36. Multiple-radionuclide autoradiography in evaluation of cerebral function. Lear JL; Ackermann R; Kameyama M; Carson R; Phelps M J Cereb Blood Flow Metab; 1984 Jun; 4(2):264-9. PubMed ID: 6725436 [TBL] [Abstract][Full Text] [Related]
37. Improvement in local cerebral blood flow measurement in gerbil brains by prevention of postmortem diffusion of [14C]iodoantipyrine. Hatakeyama T; Sakaki S; Nakamura K; Furuta S; Matsuoka K J Cereb Blood Flow Metab; 1992 Mar; 12(2):296-300. PubMed ID: 1548302 [TBL] [Abstract][Full Text] [Related]
38. Iodoamphetamine as a new tracer for local cerebral blood flow in the rat: comparison with isopropyliodoamphetamine. Rapin JR; Le Poncin-Lafitte M; Duterte D; Rips R; Morier E; Lassen NA J Cereb Blood Flow Metab; 1984 Jun; 4(2):270-4. PubMed ID: 6725437 [TBL] [Abstract][Full Text] [Related]
40. A radioisotopic method for the simultaneous quantitation of regional cerebral blood flow and glucose utilization in small dissected samples: validation studies and values in the nitrous oxide-anesthetized rat. Ginsberg MD; Busto R; Boothe TE; Campbell JA Brain Res; 1981 Dec; 230(1-2):165-79. PubMed ID: 7317777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]