These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 3945094)

  • 1. Metabolic enhancement of myocardial preservation during cardioplegic arrest.
    Rousou JA; Engelman RM; Anisimowicz L; Lemeshow S; Dobbs WA; Breyer RH; Das DK
    J Thorac Cardiovasc Surg; 1986 Feb; 91(2):270-6. PubMed ID: 3945094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluosol cardioplegia--a method of optimizing aerobic metabolism during arrest.
    Rousou JH; Dobbs WA; Engelman RM
    Circulation; 1982 Aug; 66(2 Pt 2):I55-9. PubMed ID: 7083547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of temperature and hematocrit level of oxygenated cardioplegic solutions on myocardial preservation.
    Rousou JA; Engelman RM; Breyer RH; Otani H; Lemeshow S; Das DK
    J Thorac Cardiovasc Surg; 1988 Apr; 95(4):625-30. PubMed ID: 3352296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of the hypertrophied pig myocardium. A comparison of crystalloid, blood, and Fluosol-DA cardioplegia during prolonged aortic clamping.
    Novick RJ; Stefaniszyn HJ; Michel RP; Burdon FD; Salerno TA
    J Thorac Cardiovasc Surg; 1985 Apr; 89(4):547-66. PubMed ID: 3157028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of potassium cardioplegia on high-energy phosphate kinetics during circulatory arrest with deep hypothermia in the newborn piglet heart.
    Clark BJ; Woodford EJ; Malec EJ; Norwood CR; Pigott JD; Norwood WI
    J Thorac Cardiovasc Surg; 1991 Feb; 101(2):342-9. PubMed ID: 1992245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen requirements of the isolated rat heart during hypothermic cardioplegia. Effect of oxygenation on metabolic and functional recovery after five hours of arrest.
    de Wit L; Coetzee A; Kotze J; Lochner A
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):310-20. PubMed ID: 3339898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The temperature dependence of recovery of metabolic function following hypothermic potassium cardioplegic arrest.
    Rousou JH; Dobbs WA; Meeran MK; Engelman RM
    J Thorac Cardiovasc Surg; 1982 Jan; 83(1):117-21. PubMed ID: 7054606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates.
    Bernard M; Menasche P; Canioni P; Fontanarava E; Grousset C; Piwnica A; Cozzone P
    J Thorac Cardiovasc Surg; 1985 Aug; 90(2):235-42. PubMed ID: 2410746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of oxygenated crystalloid cardioplegia on the functional and metabolic recovery of the isolated perfused rat heart.
    Coetzee A; Kotzé J; Louw J; Lochner A
    J Thorac Cardiovasc Surg; 1986 Feb; 91(2):259-69. PubMed ID: 3945093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced myocardial preservation by nicotinic acid, an antilipolytic compound. Improved cardiac performance after hypothermic cardioplegic arrest.
    Otani H; Engelman RM; Datta S; Jones RM; Cordis GA; Rousou JA; Breyer RH; Das DK
    J Thorac Cardiovasc Surg; 1988 Jul; 96(1):81-7. PubMed ID: 3386295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced myocardial protection during ischemic arrest. Oxygenation of a crystalloid cardioplegic solution.
    Bodenhamer RM; DeBoer LW; Geffin GA; O'Keefe DD; Fallon JT; Aretz TH; Haas GS; Daggett WM
    J Thorac Cardiovasc Surg; 1983 May; 85(5):769-80. PubMed ID: 6843158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of calcium and magnesium in hyperkalemic cardioplegic solutions on myocardial preservation.
    Geffin GA; Love TR; Hendren WG; Torchiana DF; Titus JS; Redonnett BE; O'Keefe DD; Daggett WM
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):239-50. PubMed ID: 2818723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolism of high energy phosphates during long-term cold storage of donor hearts: effects of extra- and intracellular fluid-type cardioplegic solutions and calcium channel blockers.
    Sukehiro S; Dyszkiewics W; Minten J; Wynants J; Van Belle H; Flameng W
    J Heart Lung Transplant; 1991; 10(3):387-93. PubMed ID: 1854766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal myocardial preservation with an acalcemic crystalloid cardioplegic solution.
    Boggs BR; Torchiana DF; Geffin GA; Titus JS; Redonnett BE; O'Keefe DD; Newell JB; Daggett WM
    J Thorac Cardiovasc Surg; 1987 Jun; 93(6):838-46. PubMed ID: 3573797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the pH of cardioplegic solution on postarrest myocardial preservation.
    Nugent WC; Levine FH; Liapis CD; LaRaia PJ; Tsai CH; Buckley MJ
    Circulation; 1982 Aug; 66(2 Pt 2):I68-72. PubMed ID: 7083549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normocalcemic blood or crystalloid cardioplegia provides better neonatal myocardial protection than does low-calcium cardioplegia.
    Pearl JM; Laks H; Drinkwater DC; Meneshian A; Sun B; Gates RN; Chang P
    J Thorac Cardiovasc Surg; 1993 Feb; 105(2):201-6. PubMed ID: 8429645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits of normothermic induction of blood cardioplegia in energy-depleted hearts, with maintenance of arrest by multidose cold blood cardioplegic infusions.
    Rosenkranz ER; Vinten-Johansen J; Buckberg GD; Okamoto F; Edwards H; Bugyi H
    J Thorac Cardiovasc Surg; 1982 Nov; 84(5):667-77. PubMed ID: 7132406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal intraoperative protection of myocardium distal to coronary stenoses.
    Silverman NA; Schmitt G; Levitsky S; Feinberg H
    J Thorac Cardiovasc Surg; 1984 Sep; 88(3):424-31. PubMed ID: 6433111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial recovery after hypothermic arrest: a comparison of oxygenated crystalloid to blood cardioplegia. The role of calcium.
    Heitmiller RF; DeBoer LW; Geffin GA; Toal KW; Fallon JT; Drop LJ; Teplick RS; O'Keefe DD; Daggett WM
    Circulation; 1985 Sep; 72(3 Pt 2):II241-53. PubMed ID: 4028363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The time course of myocardial high-energy phosphate degradation during potassium cardioplegic arrest.
    Engelman RM; Rousou JH; Longo F; Auvil J; Vertrees RA
    Surgery; 1979 Jul; 86(1):138-47. PubMed ID: 572100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.