BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3945801)

  • 1. Expression of an epidermal antigen used to study tissue induction in the early Xenopus laevis embryo.
    Akers RM; Phillips CR; Wessells NK
    Science; 1986 Feb; 231(4738):613-6. PubMed ID: 3945801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Epi 1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation.
    London C; Akers R; Phillips C
    Dev Biol; 1988 Oct; 129(2):380-9. PubMed ID: 3166428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction.
    Takebayashi-Suzuki K; Arita N; Murasaki E; Suzuki A
    Mech Dev; 2007; 124(11-12):840-55. PubMed ID: 17950579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expression of epidermal antigens in Xenopus laevis.
    Itoh K; Yamashita A; Kubota HY
    Development; 1988 Sep; 104(1):1-14. PubMed ID: 3075541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signals from the dorsal blastopore lip region during gastrulation bias the ectoderm toward a nonepidermal pathway of differentiation in Xenopus laevis.
    Savage R; Phillips CR
    Dev Biol; 1989 May; 133(1):157-68. PubMed ID: 2651180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal development in Xenopus laevis: the definition of a monoclonal antibody to an epidermal marker.
    Jones EA
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():155-66. PubMed ID: 3831211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signals that instruct somite and myotome formation persist in Xenopus laevis early tailbud stage embryos.
    Dali L; Gustin J; Perry K; Domingo CR
    Cells Tissues Organs; 2002; 172(1):1-12. PubMed ID: 12364823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the ectoderm in Xenopus: tissue specification and the role of cell association and division.
    Jones EA; Woodland HR
    Cell; 1986 Jan; 44(2):345-55. PubMed ID: 3943127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lens-forming competence in the epidermis of Xenopus laevis during development.
    Arresta E; Bernardini S; Gargioli C; Filoni S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2005 Jan; 303(1):1-12. PubMed ID: 15612005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs and ectodermal specification I. Identification of miRs and miR-targeted mRNAs in early anterior neural and epidermal ectoderm.
    Shah VV; Soibam B; Ritter RA; Benham A; Oomen J; Sater AK
    Dev Biol; 2017 Jun; 426(2):200-210. PubMed ID: 27623002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential keratin gene expression during the differentiation of the cement gland of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Dev Biol; 1990 Feb; 137(2):414-8. PubMed ID: 1689262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoderm induction in Xenopus laevis: a quantitative study using a cell lineage label and tissue-specific antibodies.
    Dale L; Smith JC; Slack JM
    J Embryol Exp Morphol; 1985 Oct; 89():289-312. PubMed ID: 3912458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of otx2 target genes and restrictions in ectodermal competence during Xenopus cement gland formation.
    Gammill LS; Sive H
    Development; 1997 Jan; 124(2):471-81. PubMed ID: 9053323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis.
    Levi G; Crossin KL; Edelman GM
    J Cell Biol; 1987 Nov; 105(5):2359-72. PubMed ID: 3680386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Xgsk-3 disrupts anterior ectodermal patterning in Xenopus.
    Pierce SB; Kimelman D
    Dev Biol; 1996 May; 175(2):256-64. PubMed ID: 8626031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inductive events in the patterning of the Xenopus laevis hatching and cement glands, two cell types which delimit head boundaries.
    Drysdale TA; Elinson RP
    Dev Biol; 1993 Jul; 158(1):245-53. PubMed ID: 8392470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm.
    Pieper M; Ahrens K; Rink E; Peter A; Schlosser G
    Development; 2012 Mar; 139(6):1175-87. PubMed ID: 22318231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. XK endo B is preferentially expressed in several induced embryonic tissues during the development of Xenopus laevis.
    LaFlamme SE; Dawid IB
    Differentiation; 1990 Mar; 43(1):1-9. PubMed ID: 1694800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning.
    Drysdale TA; Elinson RP
    Development; 1991 Feb; 111(2):469-78. PubMed ID: 1680048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive determination during formation of the anteroposterior axis in Xenopus laevis.
    Sive HL; Hattori K; Weintraub H
    Cell; 1989 Jul; 58(1):171-80. PubMed ID: 2752418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.