These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3945801)

  • 21. Two-step induction of primitive erythrocytes in Xenopus laevis embryos: signals from the vegetal endoderm and the overlying ectoderm.
    Kikkawa M; Yamazaki M; Izutsu Y; Maéno M
    Int J Dev Biol; 2001 Apr; 45(2):387-96. PubMed ID: 11330858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xnr3 affects brain patterning via cell migration in the neural-epidermal tissue boundary during early Xenopus embryogenesis.
    Morita M; Yamashita S; Matsukawa S; Haramoto Y; Takahashi S; Asashima M; Michiue T
    Int J Dev Biol; 2013; 57(9-10):779-86. PubMed ID: 24307296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cells remain competent to respond to mesoderm-inducing signals present during gastrulation in Xenopus laevis.
    Domingo C; Keller R
    Dev Biol; 2000 Sep; 225(1):226-40. PubMed ID: 10964477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm.
    Choi YS; Gumbiner B
    J Cell Biol; 1989 Jun; 108(6):2449-58. PubMed ID: 2472408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural crest formation in Xenopus laevis: mechanisms of Xslug induction.
    Mancilla A; Mayor R
    Dev Biol; 1996 Aug; 177(2):580-9. PubMed ID: 8806833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential expression of two cadherins in Xenopus laevis.
    Angres B; Müller AH; Kellermann J; Hausen P
    Development; 1991 Mar; 111(3):829-44. PubMed ID: 1879345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription factor AP-2 is an essential and direct regulator of epidermal development in Xenopus.
    Luo T; Matsuo-Takasaki M; Thomas ML; Weeks DL; Sargent TD
    Dev Biol; 2002 May; 245(1):136-44. PubMed ID: 11969261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo.
    Yamamoto Y; Grubisic K; Oelgeschläger M
    Differentiation; 2007 Mar; 75(3):235-45. PubMed ID: 17359299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC; Slack JM
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation.
    Chang C; Harland RM
    Development; 2007 Nov; 134(21):3861-72. PubMed ID: 17933792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rohon-Beard sensory neurons are induced by BMP4 expressing non-neural ectoderm in Xenopus laevis.
    Rossi CC; Hernandez-Lagunas L; Zhang C; Choi IF; Kwok L; Klymkowsky M; Artinger KB
    Dev Biol; 2008 Feb; 314(2):351-61. PubMed ID: 18191829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell proliferation in the ectoderm of the Xenopus embryo: development of substratum requirements for cytokinesis.
    Winklbauer R
    Dev Biol; 1986 Nov; 118(1):70-81. PubMed ID: 3770308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of MAP kinase by the BMP-4/TAK1 pathway in Xenopus ectoderm.
    Goswami M; Uzgare AR; Sater AK
    Dev Biol; 2001 Aug; 236(2):259-70. PubMed ID: 11476570
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of ectodermal differentiation in Xenopus laevis animal caps treated with TPA and ammonium chloride.
    Sotgia C; Fascio U; Pennati R; De Bernardi F
    Dev Growth Differ; 1998 Feb; 40(1):75-84. PubMed ID: 9563913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the expression of microtubule plus-end tracking proteins (+TIPs) during Xenopus laevis embryogenesis.
    Park EC; Lee H; Hong Y; Kim MJ; Lee ZW; Kim SI; Kim S; Kim GH; Han JK
    Gene Expr Patterns; 2012; 12(5-6):204-12. PubMed ID: 22507908
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of Xenopus N-CAM RNA in ectoderm is an early response to neural induction.
    Kintner CR; Melton DA
    Development; 1987 Mar; 99(3):311-25. PubMed ID: 2443340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.