BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3946610)

  • 1. Characterization of the apical membrane ionic permeability of the rabbit proximal convoluted tubule.
    Lapointe JY; Laprade R; Cardinal J
    Am J Physiol; 1986 Feb; 250(2 Pt 2):F339-47. PubMed ID: 3946610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule.
    Cardinal J; Lapointe JY; Laprade R
    Am J Physiol; 1984 Aug; 247(2 Pt 2):F352-64. PubMed ID: 6205598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane crosstalk in the mammalian proximal tubule during alterations in transepithelial sodium transport.
    Lapointe JY; Garneau L; Bell PD; Cardinal J
    Am J Physiol; 1990 Feb; 258(2 Pt 2):F339-45. PubMed ID: 2309892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule.
    Lapointe JY; Laprade R; Cardinal J
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F637-49. PubMed ID: 6496692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular potassium activity in mammalian proximal tubule: effect of perturbations in transepithelial sodium transport.
    Laprade R; Lapointe JY; Breton S; Duplain M; Cardinal J
    J Membr Biol; 1991 May; 121(3):249-59. PubMed ID: 1865489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of luminal pH and HCO3- on phosphate reabsorption in the rabbit proximal convoluted tubule.
    Hamm LL; Kokko JP; Jacobson HR
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F25-34. PubMed ID: 6331202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular microelectrode characterization of the rabbit cortical collecting duct.
    Koeppen BM; Biagi BA; Giebisch GH
    Am J Physiol; 1983 Jan; 244(1):F35-47. PubMed ID: 6295184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques.
    O'Neil RG; Sansom SC
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F14-24. PubMed ID: 6331197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules.
    Ishibashi K; Rector FC; Berry CA
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1569-78. PubMed ID: 2360655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of apical and basolateral Na(+)-independent Cl-/base exchange in the rabbit superficial proximal straight tubule.
    Kurtz I; Nagami G; Yanagawa N; Li L; Emmons C; Lee I
    J Clin Invest; 1994 Jul; 94(1):173-83. PubMed ID: 8040258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell swelling, co-transport activation and potassium conductance in isolated perfused rabbit kidney proximal tubules.
    Beck JS; Potts DJ
    J Physiol; 1990 Jun; 425():369-78. PubMed ID: 2213582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium.
    Reuss L; Reinach P; Weinman SA; Grady TP
    Am J Physiol; 1983 May; 244(5):C336-47. PubMed ID: 6601915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na-K-Cl cotransport in nystatin-treated tracheal cells: regulation by isoproterenol, apical UTP, and [Cl]i.
    Haas M; McBrayer DG
    Am J Physiol; 1994 May; 266(5 Pt 1):C1440-52. PubMed ID: 8203506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance.
    Ianowski JP; O'Donnell MJ
    J Exp Biol; 2004 Jul; 207(Pt 15):2599-609. PubMed ID: 15201292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubules.
    Biagi BA; Giebisch G
    Am J Physiol; 1979 Mar; 236(3):F302-10. PubMed ID: 426072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium, phosphate, glucose, bicarbonate, and alanine interactions in the isolated proximal convoluted tubule of the rabbit kidney.
    Dennis VW; Brazy PC
    J Clin Invest; 1978 Aug; 62(2):387-97. PubMed ID: 670399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term effects of uninephrectomy on electrical properties of the cortical collecting duct from rabbit remnant kidneys.
    Muto S; Ebata S; Asano Y
    J Clin Invest; 1994 Jan; 93(1):286-96. PubMed ID: 8282799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial heterogeneity of apical water permeability along rabbit kidney proximal tubule.
    Van Der Goot F; Corman B
    Am J Physiol; 1991 Jan; 260(1 Pt 2):R186-91. PubMed ID: 1847021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic differences in various segments of the proximal convoluted tubule.
    Jacobson HR; Kokko JP
    J Clin Invest; 1976 Apr; 57(4):818-25. PubMed ID: 947954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute effect of cadmium-metallothionein on glucose and amino acid transport across the apical membrane of the rabbit proximal tubule perfused in vitro.
    Tsuruoka S; Sugimoto K; Muto S; Nomiyama K; Fujimura A; Imai M
    J Pharmacol Exp Ther; 2000 Feb; 292(2):769-77. PubMed ID: 10640317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.