These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 39472526)
1. Fusing convolutional learning and attention-based Bi-LSTM networks for early Alzheimer's diagnosis from EEG signals towards IoMT. Khosravi M; Parsaei H; Rezaee K; Helfroush MS Sci Rep; 2024 Oct; 14(1):26002. PubMed ID: 39472526 [TBL] [Abstract][Full Text] [Related]
2. Alzheimer's Disease Classification With a Cascade Neural Network. You Z; Zeng R; Lan X; Ren H; You Z; Shi X; Zhao S; Guo Y; Jiang X; Hu X Front Public Health; 2020; 8():584387. PubMed ID: 33251178 [TBL] [Abstract][Full Text] [Related]
3. SpectroCVT-Net: A convolutional vision transformer architecture and channel attention for classifying Alzheimer's disease using spectrograms. Bravo-Ortiz MA; Guevara-Navarro E; Holguín-García SA; Rivera-Garcia M; Cardona-Morales O; Ruz GA; Tabares-Soto R Comput Biol Med; 2024 Oct; 181():109022. PubMed ID: 39178805 [TBL] [Abstract][Full Text] [Related]
4. Diagnosis of Alzheimer's disease and Mild Cognitive Impairment using EEG and Recurrent Neural Networks. Gkenios G; Latsiou K; Diamantaras K; Chouvarda I; Tsolaki M Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3179-3182. PubMed ID: 36086481 [TBL] [Abstract][Full Text] [Related]
5. Deep insights into MCI diagnosis: A comparative deep learning analysis of EEG time series. Şeker M; Özerdem MS J Neurosci Methods; 2024 Mar; 403():110057. PubMed ID: 38215948 [TBL] [Abstract][Full Text] [Related]
6. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
7. Exploring Frequency Band-Based Biomarkers of EEG Signals for Mild Cognitive Impairment Detection. Tawhid MNA; Siuly S; Kabir E; Li Y IEEE Trans Neural Syst Rehabil Eng; 2024; 32():189-199. PubMed ID: 38145525 [TBL] [Abstract][Full Text] [Related]
8. Deep learning of resting-state electroencephalogram signals for three-class classification of Alzheimer's disease, mild cognitive impairment and healthy ageing. Huggins CJ; Escudero J; Parra MA; Scally B; Anghinah R; Vitória Lacerda De Araújo A; Basile LF; Abasolo D J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34044374 [No Abstract] [Full Text] [Related]
9. Spectral analysis and Bi-LSTM deep network-based approach in detection of mild cognitive impairment from electroencephalography signals. Said A; Göker H Cogn Neurodyn; 2024 Apr; 18(2):597-614. PubMed ID: 38699612 [TBL] [Abstract][Full Text] [Related]
10. An Effective Hybrid Deep Learning Model for Single-Channel EEG-Based Subject-Independent Drowsiness Recognition. Reddy YRM; Muralidhar P; Srinivas M Brain Topogr; 2024 Jan; 37(1):1-18. PubMed ID: 37995000 [TBL] [Abstract][Full Text] [Related]
11. A novel method for diagnosing Alzheimer's disease using deep pyramid CNN based on EEG signals. Xia W; Zhang R; Zhang X; Usman M Heliyon; 2023 Apr; 9(4):e14858. PubMed ID: 37025794 [TBL] [Abstract][Full Text] [Related]
12. Efficient anomaly detection from medical signals and images with convolutional neural networks for Internet of medical things (IoMT) systems. Khalil AA; E Ibrahim F; Abbass MY; Haggag N; Mahrous Y; Sedik A; Elsherbeeny Z; Khalaf AAM; Rihan M; El-Shafai W; El-Banby GM; Soltan E; Soliman NF; Algarni AD; Al-Hanafy W; El-Fishawy AS; El-Rabaie EM; Al-Nuaimy W; Dessouky MI; Saleeb AA; Messiha NW; El-Dokany IM; El-Bendary MAM; Abd El-Samie FE Int J Numer Method Biomed Eng; 2022 Jan; 38(1):e3530. PubMed ID: 34506081 [TBL] [Abstract][Full Text] [Related]
13. A novel deep-learning model based on τ-shaped convolutional network (τNet) with long short-term memory (LSTM) for physiological fatigue detection from EEG and EOG signals. He L; Zhang L; Lin X; Qin Y Med Biol Eng Comput; 2024 Jun; 62(6):1781-1793. PubMed ID: 38374416 [TBL] [Abstract][Full Text] [Related]
14. An attention-based deep learning approach for the classification of subjective cognitive decline and mild cognitive impairment using resting-state EEG. Sibilano E; Brunetti A; Buongiorno D; Lassi M; Grippo A; Bessi V; Micera S; Mazzoni A; Bevilacqua V J Neural Eng; 2023 Feb; 20(1):. PubMed ID: 36745929 [No Abstract] [Full Text] [Related]
15. VGG-TSwinformer: Transformer-based deep learning model for early Alzheimer's disease prediction. Hu Z; Wang Z; Jin Y; Hou W Comput Methods Programs Biomed; 2023 Feb; 229():107291. PubMed ID: 36516516 [TBL] [Abstract][Full Text] [Related]
16. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Ieracitano C; Mammone N; Hussain A; Morabito FC Neural Netw; 2020 Mar; 123():176-190. PubMed ID: 31884180 [TBL] [Abstract][Full Text] [Related]
17. An EEG-based systematic explainable detection framework for probing and localizing abnormal patterns in Alzheimer's disease. Song Z; Deng B; Wang J; Yi G J Neural Eng; 2022 May; 19(3):. PubMed ID: 35453136 [No Abstract] [Full Text] [Related]
18. A 3D densely connected convolution neural network with connection-wise attention mechanism for Alzheimer's disease classification. Zhang J; Zheng B; Gao A; Feng X; Liang D; Long X Magn Reson Imaging; 2021 May; 78():119-126. PubMed ID: 33588019 [TBL] [Abstract][Full Text] [Related]
19. Attention-Based DSC-ConvLSTM for Multiclass Motor Imagery Classification. Li L; Sun N Comput Intell Neurosci; 2022; 2022():8187009. PubMed ID: 35571721 [TBL] [Abstract][Full Text] [Related]
20. MuLHiTA: A Novel Multiclass Classification Framework With Multibranch LSTM and Hierarchical Temporal Attention for Early Detection of Mental Stress. Xia L; Feng Y; Guo Z; Ding J; Li Y; Li Y; Ma M; Gan G; Xu Y; Luo J; Shi Z; Guan Y IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):9657-9670. PubMed ID: 35385389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]