These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 394726)

  • 21. Clinical evaluation of a new water removal measuring device in standard dialysis.
    Munaretto G; Bonadonna A; Bisetto F; Grando R; Sama C
    Artif Organs; 1987 Apr; 11(2):183-7. PubMed ID: 3593046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Technical and clinical evaluation of different short, highly efficient dialysis techniques.
    Ronco C; Brendolan A; Bragantini L; Chiaramonte S; Fabris A; Feriani M; Dell'Aquila R; Milan M; Scabardi M; Pinna V
    Contrib Nephrol; 1988; 61():46-68. PubMed ID: 3359780
    [No Abstract]   [Full Text] [Related]  

  • 23. Eosinophilia and pulmonary dysfunction during Cuprophan hemodialysis.
    Michelson EA; Cohen L; Dankner RE; Kulczycki A
    Kidney Int; 1983 Aug; 24(2):246-9. PubMed ID: 6632523
    [No Abstract]   [Full Text] [Related]  

  • 24. Hemodialysis versus cross hemodialysis in experimental hepatic coma.
    Opolon P; Lavallard MC; Huguet C; Bidallier M; Granger A; Gallot D; Bloch P
    Surg Gynecol Obstet; 1976 Jun; 142(6):845-53. PubMed ID: 936027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of moisture on and kinetic features of the ultrafiltration rate of dialysis membrane.
    Sato H; Kidaka T
    Artif Organs; 1981 Aug; 5(3):286-9. PubMed ID: 7305690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The influence of cuprophan and polysulfone membranes on dialyzer reusability and intradialytic complications.
    Kadiri S; Kehinde Z; Arije A; Salako BL
    Afr J Med Med Sci; 2001 Sep; 30(3):191-4. PubMed ID: 14510127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High flux hemofiltration.
    Bosch JP; Geronemus R; Glabman S; Lysaght M; Kahn T; von Albertini B
    Artif Organs; 1978 Nov; 2(4):339-42. PubMed ID: 743001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cuprophan membrane induces interleukin-1 activity.
    Yamagami S; Yoshihara H; Kishimoto T; Sugimura T; Niwa M; Maekawa M
    ASAIO Trans; 1986; 32(1):98-101. PubMed ID: 3490869
    [No Abstract]   [Full Text] [Related]  

  • 29. [Ways of intensification of hemodialysis therapy].
    Filiptsev PIa; Kirkhman VV; Timokhov VS
    Ter Arkh; 1988; 60(6):44-7. PubMed ID: 3206368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ultrafiltration on solute clearances in cuprophan and cellulose hollow fiber dialyzers: in vitro and clinical studies.
    Nolph KD; Twardowski ZJ; Hopkins CA; Rubin J; van Stone JC
    J Lab Clin Med; 1978 Jun; 91(6):998-1010. PubMed ID: 650063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A one-dimensional model of simultaneous hemodialysis and ultrafiltration with highly permeable membranes.
    Jaffrin MY; Gupta BB; Malbrancq JM
    J Biomech Eng; 1981 Nov; 103(4):261-6. PubMed ID: 7311492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced cytokine induction and removal of complement products with synthetic hemodialysis membranes.
    Schindler R; Ertl T; Beck W; Lepenies J; Boenisch O; Oppermann M; Kaspar E; Frei U
    Blood Purif; 2006; 24(2):203-11. PubMed ID: 16373999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assembly of terminal SC5b-9 complement complexes: a new index of blood-membrane interaction.
    Schaefer RM; Rauterberg EW; Deppisch R; Vienken J
    Miner Electrolyte Metab; 1990; 16(1):73-6. PubMed ID: 2325595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased binding of beta-2-microglobulin to blood cells in dialysis patients treated with high-flux dialyzers compared with low-flux membranes contributed to reduced beta-2-microglobulin concentrations. Results of a cross-over study.
    Traut M; Haufe CC; Eismann U; Deppisch RM; Stein G; Wolf G
    Blood Purif; 2007; 25(5-6):432-40. PubMed ID: 17957097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimized cellulose membranes for artificial kidney dialysis applications.
    Meltzer TH; Gutfreund K; Kulshrestha VK; Stake AM
    Trans Am Soc Artif Intern Organs; 1968; 14():12-8. PubMed ID: 5701524
    [No Abstract]   [Full Text] [Related]  

  • 36. [Experimental development of hollow cellulose membranes for blood detoxification].
    Holtz M; Bartsch D; Gensrich HJ; Gröbe V; Klinkmann H
    Z Urol Nephrol; 1983 Dec; 76(12):783-7. PubMed ID: 6670384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro platelet adhesion to dialysis membranes.
    Remuzzi A; Boccardo P; Benigni A
    Nephrol Dial Transplant; 1991; 6 Suppl 2():36-9. PubMed ID: 1866066
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leucopenia, hypoxia and complement activation in haemodialysis. Three unrelated phenomena.
    de Vinuesa SG; Resano M; Luño J; Gonzalez C; Barril G; Junco E; Valderrabano F
    Proc Eur Dial Transplant Assoc; 1983; 19():159-67. PubMed ID: 6878230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in dialysis: hemodialysis membranes.
    Klein E; Holland FF; Eberle K
    Kidney Int Suppl; 1980 Sep; 10():S19-25. PubMed ID: 6934334
    [No Abstract]   [Full Text] [Related]  

  • 40. Permeability to oxygen (PmO2) of cuprophan haemodialysis membranes.
    Borovetz HS; Mateer DD; Hardesty RL
    Med Biol Eng Comput; 1981 Jul; 19(4):391-7. PubMed ID: 7321605
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.