These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 3947652)
1. Cholesterol synthesis in cultured human peripheral lymphocytes. Influence of LDL, HDL, cholesterol/phosphatidylcholine liposomes and complete serum. Melzner I; Hambitzer R; Kirkpatrick CJ Biochim Biophys Acta; 1986 Feb; 875(3):439-49. PubMed ID: 3947652 [TBL] [Abstract][Full Text] [Related]
2. Regulation of cholesterol synthesis by low density lipoprotein in isolated human lymphocytes. Comparison of cells from normal subjects and patients with homozygous familial hypercholesterolemia and abetalipoproteinemia. Ho YK; Faust JR; Bilheimer DW; Brown MS; Goldstein JL J Exp Med; 1977 Jun; 145(6):1531-49. PubMed ID: 194011 [TBL] [Abstract][Full Text] [Related]
3. A high-density-lipoprotein receptor appears to mediate the transfer of essential fatty acids from high-density lipoprotein to lymphocytes. Xu Q; Bühler E; Steinmetz A; Schönitzer D; Böck G; Jürgens G; Wick G Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):395-401. PubMed ID: 1332672 [TBL] [Abstract][Full Text] [Related]
4. Progesterone production by cultured luteal cells in the presence of bovine low- and high-density lipoproteins purified by heparin affinity chromatography. Carroll DJ; Grummer RR; Mao FC J Anim Sci; 1992 Aug; 70(8):2516-26. PubMed ID: 1506313 [TBL] [Abstract][Full Text] [Related]
5. Regulation of sterol synthesis and of 3-hydroxy-3-methylglutaryl coenzyme A reductase by lipoproteins in glial cells in primary culture. Langan TJ; Iimori Y; White G; Volpe JJ J Neurosci Res; 1987; 17(4):361-6. PubMed ID: 2887663 [TBL] [Abstract][Full Text] [Related]
6. [Inhibition by the high density lipoprotein HDL2 and HDL3 of DNA and sterol biosynthesis in human lymphocytes stimulated with concanavalin A]. Barbu V; Ayrault-Jarrier M; Mazière JC; Polonovski J Biochimie; 1980; 62(11-12):829-32. PubMed ID: 7470513 [TBL] [Abstract][Full Text] [Related]
7. Control of sterol metabolism in cultured rat granulosa cells. Rosenblum MF; Huttler CR; Strauss JF Endocrinology; 1981 Nov; 109(5):1518-27. PubMed ID: 7297489 [TBL] [Abstract][Full Text] [Related]
8. Effects of endogenous and exogenous cholesterol on the ultrastructure and steroid secretion of undifferentiated rat adrenocortical cells in primary culture. Heikkilä P Cell Tissue Res; 1990 Mar; 259(3):421-7. PubMed ID: 2317838 [TBL] [Abstract][Full Text] [Related]
9. Cellular cholesterol metabolism in mitogen-stimulated lymphocytes--requirement for de novo synthesis. Owens D; Collins P; Johnson A; Tomkin G Biochim Biophys Acta; 1990 Feb; 1051(2):138-43. PubMed ID: 2310768 [TBL] [Abstract][Full Text] [Related]
10. Role of lipoproteins and 3-hydroxy-3-methylglutaryl coenzyme A reductase in progesterone production by cultured bovine granulosa cells. Savion N; Laherty R; Cohen D; Lui GM; Gospodarowicz D Endocrinology; 1982 Jan; 110(1):13-22. PubMed ID: 6274615 [TBL] [Abstract][Full Text] [Related]
11. Lipoprotein metabolism by rat hepatomas. Studies on the etiology of defective dietary feedback inhibition of cholesterol synthesis. Barnard GF; Erickson SK; Cooper AD J Clin Invest; 1984 Jul; 74(1):173-84. PubMed ID: 6330173 [TBL] [Abstract][Full Text] [Related]
13. Effect of low density lipoproteins, high density lipoproteins, and cholesterol on apolipoprotein A-I mRNA in Hep G2 cells. Monge JC; Hoeg JM; Law SW; Brewer HB FEBS Lett; 1989 Jan; 243(2):213-7. PubMed ID: 2492952 [TBL] [Abstract][Full Text] [Related]
14. Phosphatidylcholine-rich acceptors, but not native HDL or its apolipoproteins, mobilize cholesterol from cholesterol-rich insoluble components of human atherosclerotic plaques. Chung BH; Franklin F; Liang P; Doran S; Cho BH; Curcio CA Biochim Biophys Acta; 2005 Mar; 1733(1):76-89. PubMed ID: 15749058 [TBL] [Abstract][Full Text] [Related]
15. Role of estradiol as a biological amplifier of gonadotropin action in the ovary: in vitro studies using swine granulosa cells and homologous lipoproteins. Veldhuis JD; Gwynne JT; Strauss JF; Demers LM Endocrinology; 1984 Jun; 114(6):2312-22. PubMed ID: 6426940 [TBL] [Abstract][Full Text] [Related]
16. Regulation of low density lipoprotein receptor activity in freshly isolated human lymphocytes. Ho YK; Brown S; Bilheimer DW; Goldstein JL J Clin Invest; 1976 Dec; 58(6):1465-74. PubMed ID: 186492 [TBL] [Abstract][Full Text] [Related]
17. Binding of lipoproteins and regulation of cholesterol synthesis in cultured mouse adipose cells. Barbaras R; Grimaldi P; Négrel R; Ailhaud G Biochim Biophys Acta; 1985 Jun; 845(3):492-501. PubMed ID: 4005302 [TBL] [Abstract][Full Text] [Related]
18. Lipid utilization by human lymphocytes is correlated with high-density-lipoprotein binding site activity. Xu Q; Jürgens G; Huber LA; Böck G; Wolf H; Wick G Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):105-12. PubMed ID: 1637288 [TBL] [Abstract][Full Text] [Related]
19. High density lipoprotein and low density lipoprotein utilization by human granulosa cells for progesterone synthesis in serum-free culture: respective contributions of free and esterified cholesterol. Parinaud J; Perret B; Ribbes H; Chap H; Pontonnier G; Douste-Blazy L J Clin Endocrinol Metab; 1987 Mar; 64(3):409-17. PubMed ID: 3818885 [TBL] [Abstract][Full Text] [Related]
20. The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Chang XL; Liu L; Wang N; Chen ZJ; Zhang C Biol Reprod; 2017 Jan; 97(6):862-872. PubMed ID: 29092018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]