These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39478677)
1. Laser-Regulated Iridium-Diffused Nitrogen-Carbon Sites for Enhanced Hydrazine-Assisted Alkaline Seawater Splitting and Zinc-Hydrazine Batteries. Moon CJ; Maheskumar V; Min A; Kumar A; Lee S; Senthil RA; Ubaidullah M; Choi MY Small; 2024 Oct; ():e2408569. PubMed ID: 39478677 [TBL] [Abstract][Full Text] [Related]
2. Accelerating the Hydrogen Evolution Kinetics with a Pulsed Laser-Synthesized Platinum Nanocluster-Decorated Nitrogen-Doped Carbon Electrocatalyst for Alkaline Seawater Electrolysis. Maheskumar V; Min A; Kumar A; Senthil RA; Moon CJ; Choi MY Small; 2024 Oct; 20(40):e2403314. PubMed ID: 39152932 [TBL] [Abstract][Full Text] [Related]
3. Hydrazine-Assisted Acidic Water Splitting Driven by Iridium Single Atoms. Luo F; Pan S; Xie Y; Li C; Yu Y; Bao H; Yang Z Adv Sci (Weinh); 2023 Nov; 10(32):e2305058. PubMed ID: 37775308 [TBL] [Abstract][Full Text] [Related]
4. Partial oxidation of Rh/Ru nanoparticles within carbon nanofibers for high-efficiency hydrazine oxidation-assisted hydrogen generation. Xu J; Zhong M; Yan S; Chen X; Li W; Xu M; Wang C; Lu X J Colloid Interface Sci; 2025 Feb; 679(Pt A):171-180. PubMed ID: 39362142 [TBL] [Abstract][Full Text] [Related]
5. Ruthenium Nanoclusters and Single Atoms on α-MoC/N-Doped Carbon Achieves Low-Input/Input-Free Hydrogen Evolution via Decoupled/Coupled Hydrazine Oxidation. Li Y; Niu S; Liu P; Pan R; Zhang H; Ahmad N; Shi Y; Liang X; Cheng M; Chen S; Du J; Hu M; Wang D; Chen W; Li Y Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202316755. PubMed ID: 38739420 [TBL] [Abstract][Full Text] [Related]
6. Superhydrophilicity and superaerophobicity Ni/Ni Hao M; Li C; Wu M; Li Q; Xiao Z; Shen D; Wang W J Colloid Interface Sci; 2025 Feb; 679(Pt A):966-974. PubMed ID: 39418899 [TBL] [Abstract][Full Text] [Related]
7. N-Coordinated Iridium-Molybdenum Dual-Atom Catalysts Enabling Efficient Bifunctional Hydrogen Electrocatalysis. Shi J; Li R; Zhang J; Wang Y; Ma W; Yue Z; Jin C; Liu Y; Zheng L; Bai J; Li X; Leng K; Qu Y ACS Appl Mater Interfaces; 2024 Jan; 16(1):889-897. PubMed ID: 38153800 [TBL] [Abstract][Full Text] [Related]
8. Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocatalyst for high-efficiency overall hydrazine splitting. Ao Y; Chen S; Wang C; Lu X J Colloid Interface Sci; 2021 Nov; 601():495-504. PubMed ID: 34090027 [TBL] [Abstract][Full Text] [Related]
9. Taking Advantage of Potential Coincidence Region: Advanced Self-Activated/Propelled Hydrazine-Assisted Alkaline Seawater Electrolysis and Zn-Hydrazine Battery. Wang HY; Wang L; Ren JT; Tian W; Sun M; Feng Y; Yuan ZY ACS Nano; 2023 Jun; 17(11):10965-10975. PubMed ID: 37265321 [TBL] [Abstract][Full Text] [Related]
10. Ru nanoclusters anchored on boron- and nitrogen-doped carbon for a highly efficient hydrogen evolution reaction in alkaline seawater. Jiang B; Wang Z; Zhao H; Wang X; Mao X; Huang A; Zhou X; Yin K; Sheng K; Wang J Nanoscale; 2023 Dec; 15(48):19703-19708. PubMed ID: 38039054 [TBL] [Abstract][Full Text] [Related]
11. Co-N-C/C Bifunctional Electrocatalyst for Dual Applications in Seawater Electrolysis and Catalyst in Hydrazine Fuel Cells. Behera S; Chauhan C; Mondal B Small; 2024 Aug; 20(31):e2311946. PubMed ID: 38446102 [TBL] [Abstract][Full Text] [Related]
12. Regulating Mo-based alloy-oxide active interfaces for efficient alkaline hydrogen evolution assisted by hydrazine oxidation. Zhang M; Zhou B; Gong Y; Shang M; Xiao W; Wang J; Dai C; Zhang H; Wu Z; Wang L J Colloid Interface Sci; 2024 Aug; 667():73-81. PubMed ID: 38621333 [TBL] [Abstract][Full Text] [Related]
13. Heteroatom-Induced Accelerated Kinetics on Nickel Selenide for Highly Efficient Hydrazine-Assisted Water Splitting and Zn-Hydrazine Battery. Wang HY; Wang L; Ren JT; Tian WW; Sun ML; Yuan ZY Nanomicro Lett; 2023 Jun; 15(1):155. PubMed ID: 37337062 [TBL] [Abstract][Full Text] [Related]
15. Bifunctional zeolitic imidazolate framework-67 coupling with CoNiSe electrocatalyst for efficient hydrazine-assisted water splitting. Liu W; Shi T; Feng Z J Colloid Interface Sci; 2023 Jan; 630(Pt B):888-899. PubMed ID: 36356454 [TBL] [Abstract][Full Text] [Related]
16. NiFeP nanosheets for efficient and durable hydrazine-assisted electrolytic hydrogen production. Hou J; Mei K; Jiang T; Yu X; Wu M Dalton Trans; 2024 Mar; 53(10):4574-4579. PubMed ID: 38349199 [TBL] [Abstract][Full Text] [Related]
17. Taking Advantage of Potential Coincidence Region: Insights into Gas Production Behavior in Advanced Self-Activated Hydrazine-Assisted Alkaline Seawater Electrolysis. Wang HY; Zhai S; Wang H; Yan F; Ren JT; Wang L; Sun M; Yuan ZY ACS Nano; 2024 Jul; ():. PubMed ID: 39012051 [TBL] [Abstract][Full Text] [Related]
18. Vanadium Substitution Steering Reaction Kinetics Acceleration for Ni Zhang J; Liu Y; Li J; Jin X; Li Y; Qian Q; Wang Y; El-Harairy A; Li Z; Zhu Y; Zhang H; Cheng M; Zeng S; Zhang G ACS Appl Mater Interfaces; 2021 Jan; 13(3):3881-3890. PubMed ID: 33464037 [TBL] [Abstract][Full Text] [Related]
19. Regulation of the electronic structure of a RuNi/MoC electrocatalyst for high-efficiency hydrogen evolution in alkaline seawater. Fan X; Li B; Zhu C; Yan F; Chen Y Nanoscale; 2023 Oct; 15(40):16403-16412. PubMed ID: 37791522 [TBL] [Abstract][Full Text] [Related]
20. Cooperative Ni(Co)-Ru-P Sites Activate Dehydrogenation for Hydrazine Oxidation Assisting Self-powered H Hu Y; Chao T; Li Y; Liu P; Zhao T; Yu G; Chen C; Liang X; Jin H; Niu S; Chen W; Wang D; Li Y Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308800. PubMed ID: 37428114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]