These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 3947984)

  • 1. Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad.
    Matsushima TA; Satou M; Ueda K
    Brain Res; 1986 Feb; 365(1):198-203. PubMed ID: 3947984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the 'snapping-evoking area' in the optic tectum.
    Satou M; Matsushima T; Takeuchi H; Ueda K
    J Comp Physiol A; 1985 Dec; 157(6):717-37. PubMed ID: 3837110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal pathways for the lingual reflex in the Japanese toad.
    Matsushima T; Satou M; Ueda K
    J Comp Physiol A; 1988 Dec; 164(2):173-93. PubMed ID: 3244127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tongue-muscle-controlling motoneurons in the Japanese toad: neural inputs from the thalamus.
    Satou M; Takeuchi H; Ueda K
    Brain Res; 1989 Feb; 481(1):39-46. PubMed ID: 2706465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tongue movements--brainstem mechanisms and clinical postulates.
    Lowe AA
    Brain Behav Evol; 1984; 25(2-3):128-37. PubMed ID: 6242023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic organization of the tectal-facial pathways in the cat. I. Synaptic potentials following collicular stimulation.
    Vidal PP; May PJ; Baker R
    J Neurophysiol; 1988 Aug; 60(2):769-97. PubMed ID: 3171650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disynaptic tectal and pyramidal excitation of hindlimb motoneurons mediated by pontine reticulospinal neurons in the cat.
    Iwamoto Y
    Exp Brain Res; 1990; 79(1):175-86. PubMed ID: 2311694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic organization of tectal-facial pathways in cat. II. Synaptic potentials following midbrain tegmentum stimulation.
    May PJ; Vidal PP; Baker R
    J Neurophysiol; 1990 Aug; 64(2):381-402. PubMed ID: 1698936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electromyographic analysis of electrically-evoked prey-catching behavior by means of stimuli applied to the optic tectum in the Japanese toad.
    Matsushima T; Satou M; Ueda K
    Neurosci Res; 1985 Dec; 3(2):154-61. PubMed ID: 3837863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrate for motor control of feeding in amphibians.
    Dicke U; Roth G; Matsushima T
    Acta Anat (Basel); 1998; 163(3):127-43. PubMed ID: 9973634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue.
    Kecskes S; Matesz C; Gaál B; Birinyi A
    Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of neural circuits controlling feeding behavior in frogs.
    Nishikawa KC; Anderson CW; Deban SM; O'Reilly JC
    Brain Behav Evol; 1992; 40(2-3):125-40. PubMed ID: 1422806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergence on reticulospinal neurons mediating contralateral pyramidal disynaptic EPSPs to neck motoneurons.
    Alstermark B; Pinter M; Sasaki S
    Brain Res; 1983 Jan; 259(1):151-4. PubMed ID: 6297667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct contacts between glossopharyngeal afferent terminals and hypoglossal motoneurons revealed by double labeling with cobaltic-lysine and horseradish peroxidase in the Japanese toad.
    Matsushima T; Satou M; Ueda K
    Neurosci Lett; 1987 Oct; 80(3):241-5. PubMed ID: 2446209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum.
    Matsushima T; Satou M; Ueda K
    J Comp Physiol A; 1989 Nov; 166(1):7-22. PubMed ID: 2600886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic inputs from low threshold afferents of trunk muscles to motoneurons innervating the longissimus lumborum muscle in the spinal cat.
    Wada N; Takahashi K; Kanda K
    Exp Brain Res; 2003 Apr; 149(4):487-96. PubMed ID: 12677329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta.
    Rácz E; Bácskai T; Szabo G; Székely G; Matesz C
    Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat.
    Leahy JC; Durkovic RG
    J Neurophysiol; 1991 Aug; 66(2):460-72. PubMed ID: 1774582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reflex behavior mediated by monosynaptic connections between hair afferents and motoneurons in the larval tobacco hornworm, Manduca sexta.
    Weeks JC; Jacobs GA
    J Comp Physiol A; 1987 Mar; 160(3):315-29. PubMed ID: 3572850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.