These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 3948359)
21. Cardiopulmonary resuscitation with a hydraulic-pneumatic band. Halperin H; Berger R; Chandra N; Ireland M; Leng C; Lardo A; Paradis N Crit Care Med; 2000 Nov; 28(11 Suppl):N203-6. PubMed ID: 11098947 [TBL] [Abstract][Full Text] [Related]
22. Aortic and right atrial systolic pressures during cardiopulmonary resuscitation: a potential indicator of the mechanism of blood flow. Raessler KL; Kern KB; Sanders AB; Tacker WA; Ewy GA Am Heart J; 1988 May; 115(5):1021-9. PubMed ID: 3364335 [TBL] [Abstract][Full Text] [Related]
23. Blood flow during cardiopulmonary resuscitation with simultaneous compression and ventilation in infant pigs. Berkowitz ID; Chantarojanasiri T; Koehler RC; Schleien CL; Dean JM; Michael JR; Rogers MC; Traystman RJ Pediatr Res; 1989 Dec; 26(6):558-64. PubMed ID: 2602034 [TBL] [Abstract][Full Text] [Related]
24. Circulatory support during cardiac arrest using a pneumatic vest and abdominal binder with simultaneous high-pressure airway inflation. Niemann JT; Rosborough JP; Niskanen RA; Criley JM Ann Emerg Med; 1984 Sep; 13(9 Pt 2):767-70. PubMed ID: 6476537 [TBL] [Abstract][Full Text] [Related]
25. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chang MW; Coffeen P; Lurie KG; Shultz J; Bache RJ; White CW Chest; 1994 Oct; 106(4):1250-9. PubMed ID: 7924505 [TBL] [Abstract][Full Text] [Related]
26. Effect of regulating airway pressure on intrathoracic pressure and vital organ perfusion pressure during cardiopulmonary resuscitation: a non-randomized interventional cross-over study. Kwon Y; Debaty G; Puertas L; Metzger A; Rees J; McKnite S; Yannopoulos D; Lurie K Scand J Trauma Resusc Emerg Med; 2015 Oct; 23():83. PubMed ID: 26511270 [TBL] [Abstract][Full Text] [Related]
27. Augmentation of cerebral perfusion by simultaneous chest compression and lung inflation with abdominal binding after cardiac arrest in dogs. Koehler RC; Chandra N; Guerci AD; Tsitlik J; Traystman RJ; Rogers MC; Weisfeldt ML Circulation; 1983 Feb; 67(2):266-75. PubMed ID: 6848216 [TBL] [Abstract][Full Text] [Related]
28. Air trapping in the lungs during cardiopulmonary resuscitation in dogs. A mechanism for generating changes in intrathoracic pressure. Halperin HR; Brower R; Weisfeldt ML; Tsitlik JE; Chandra N; Cristiano LM; Fessler H; Beyar R; Wurmb E; Guerci AD Circ Res; 1989 Oct; 65(4):946-54. PubMed ID: 2791229 [TBL] [Abstract][Full Text] [Related]
29. Design of near-optimal waveforms for chest and abdominal compression and decompression in CPR using computer-simulated evolution. Babbs CF Resuscitation; 2006 Feb; 68(2):277-93. PubMed ID: 16388884 [TBL] [Abstract][Full Text] [Related]
30. Observations of hemodynamics during human cardiopulmonary resuscitation. Chandra NC; Tsitlik JE; Halperin HR; Guerci AD; Weisfeldt ML Crit Care Med; 1990 Sep; 18(9):929-34. PubMed ID: 2394116 [TBL] [Abstract][Full Text] [Related]
31. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; Nadkarni VM; McKnite SH; Rao A; Kruger K; Metzger A; Benditt DG; Lurie KG Circulation; 2005 Aug; 112(6):803-11. PubMed ID: 16061732 [TBL] [Abstract][Full Text] [Related]
34. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest. Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436 [TBL] [Abstract][Full Text] [Related]
35. Intrathoracic and abdominal pressure variations as an efficient method for cardiopulmonary resuscitation: studies in dogs compared with computer model results. Beyar R; Kishon Y; Kimmel E; Neufeld H; Dinnar U Cardiovasc Res; 1985 Jun; 19(6):335-42. PubMed ID: 4016812 [TBL] [Abstract][Full Text] [Related]
36. Blood flow and perfusion pressure during open-chest versus closed-chest cardiopulmonary resuscitation in pigs. Rubertsson S; Grenvik A; Wiklund L Crit Care Med; 1995 Apr; 23(4):715-25. PubMed ID: 7712762 [TBL] [Abstract][Full Text] [Related]
37. Hemodynamics in humans during conventional and experimental methods of cardiopulmonary resuscitation. Swenson RD; Weaver WD; Niskanen RA; Martin J; Dahlberg S Circulation; 1988 Sep; 78(3):630-9. PubMed ID: 3409501 [TBL] [Abstract][Full Text] [Related]
38. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320 [TBL] [Abstract][Full Text] [Related]
39. Continuous external counterpressure during closed-chest resuscitation: a critical appraisal of the military antishock trouser garment and abdominal binder. Niemann JT; Rosborough JP; Criley JM Circulation; 1986 Dec; 74(6 Pt 2):IV102-7. PubMed ID: 3536155 [TBL] [Abstract][Full Text] [Related]
40. Cerebral blood flow during conventional, new and open-chest cardio-pulmonary resuscitation in dogs. Arai T; Dote K; Tsukahara I; Nitta K; Nagaro T Resuscitation; 1984 Jul; 12(2):147-54. PubMed ID: 6091203 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]