These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 3948359)
41. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959 [TBL] [Abstract][Full Text] [Related]
42. The biphasic mechanism of blood flow during cardiopulmonary resuscitation: a physiologic comparison of active compression-decompression and high-impulse manual external cardiac massage. Tucker KJ; Khan J; Idris A; Savitt MA Ann Emerg Med; 1994 Nov; 24(5):895-906. PubMed ID: 7978564 [TBL] [Abstract][Full Text] [Related]
43. Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Yannopoulos D; McKnite S; Aufderheide TP; Sigurdsson G; Pirrallo RG; Benditt D; Lurie KG Resuscitation; 2005 Mar; 64(3):363-72. PubMed ID: 15733767 [TBL] [Abstract][Full Text] [Related]
44. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Timerman S; Cardoso LF; Ramires JA; Halperin H Resuscitation; 2004 Jun; 61(3):273-80. PubMed ID: 15172705 [TBL] [Abstract][Full Text] [Related]
45. Hemodynamic effects of continuous abdominal binding during cardiac arrest and resuscitation. Niemann JT; Rosborough JP; Ung S; Criley JM Am J Cardiol; 1984 Jan; 53(2):269-74. PubMed ID: 6695723 [TBL] [Abstract][Full Text] [Related]
46. Abdominal compressions increase vital organ perfusion during CPR in dogs: relation with efficacy of thoracic compressions. Hoekstra OS; van Lambalgen AA; Groeneveld AB; van den Bos GC; Thijs LG Ann Emerg Med; 1995 Mar; 25(3):375-85. PubMed ID: 7864480 [TBL] [Abstract][Full Text] [Related]
47. Aortic diameter and pressure-flow sequence identify mechanism of blood flow during external chest compression in dogs. Guerci AD; Halperin HR; Beyar R; Beattie C; Tsitlik JE; Wurmb EC; Chandra NC; Weisfeldt ML J Am Coll Cardiol; 1989 Sep; 14(3):790-8. PubMed ID: 2768725 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Steen S; Liao Q; Pierre L; Paskevicius A; Sjöberg T Resuscitation; 2002 Dec; 55(3):285-99. PubMed ID: 12458066 [TBL] [Abstract][Full Text] [Related]
49. Corpuls cpr resuscitation device generates superior emulated flows and pressures than LUCAS II in a mechanical thorax model. Eichhorn S; Mendoza Garcia A; Polski M; Spindler J; Stroh A; Heller M; Lange R; Krane M Australas Phys Eng Sci Med; 2017 Jun; 40(2):441-447. PubMed ID: 28258484 [TBL] [Abstract][Full Text] [Related]
50. Influence of adrenergic drugs upon vital organ perfusion during CPR. Holmes HR; Babbs CF; Voorhees WD; Tacker WA; de Garavilla B Crit Care Med; 1980 Mar; 8(3):137-40. PubMed ID: 7363628 [TBL] [Abstract][Full Text] [Related]
51. Comparison of mechanical techniques of cardiopulmonary resuscitation: survival and neurologic outcome in dogs. Kern KB; Carter AB; Showen RL; Voorhees WD; Babbs CF; Tacker WA; Ewy GA Am J Emerg Med; 1987 May; 5(3):190-5. PubMed ID: 3580049 [TBL] [Abstract][Full Text] [Related]
52. Canine sternal force-displacement relationship during cardiopulmonary resuscitation. Gruben KG; Halperin HR; Popel AS; Tsitlik JE IEEE Trans Biomed Eng; 1999 Jul; 46(7):788-96. PubMed ID: 10396897 [TBL] [Abstract][Full Text] [Related]
53. Comparison of CPR outcome predictors between rhythmic abdominal compression and continuous chest compression CPR techniques. Kammeyer RM; Pargett MS; Rundell AE Emerg Med J; 2014 May; 31(5):394-400. PubMed ID: 23471166 [TBL] [Abstract][Full Text] [Related]
54. Transmission of intrathoracic pressure to the intracranial space during cardiopulmonary resuscitation in dogs. Guerci AD; Shi AY; Levin H; Tsitlik J; Weisfeldt ML; Chandra N Circ Res; 1985 Jan; 56(1):20-30. PubMed ID: 3967345 [TBL] [Abstract][Full Text] [Related]
56. Reducing ventilation frequency during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Yannopoulos D; Tang W; Roussos C; Aufderheide TP; Idris AH; Lurie KG Respir Care; 2005 May; 50(5):628-35. PubMed ID: 15871757 [TBL] [Abstract][Full Text] [Related]
57. Hemodynamics of cardiac massage. Jackson RE; Freeman SB Emerg Med Clin North Am; 1983 Dec; 1(3):501-13. PubMed ID: 6396069 [TBL] [Abstract][Full Text] [Related]
58. The effect of coronary artery lesions on the relationship between coronary perfusion pressure and myocardial blood flow during cardiopulmonary resuscitation in pigs. Kern KB; Lancaster L; Goldman S; Ewy GA Am Heart J; 1990 Aug; 120(2):324-33. PubMed ID: 2382610 [TBL] [Abstract][Full Text] [Related]
59. Regional blood flow during cardiopulmonary resuscitation in dogs. Luce JM; Rizk NA; Niskanen RA Crit Care Med; 1984 Oct; 12(10):874-8. PubMed ID: 6488828 [TBL] [Abstract][Full Text] [Related]
60. [New mechanical methods for cardiopulmonary resuscitation (CPR). Literature study and analysis of effectiveness]. Lindner KH; Wenzel V Anaesthesist; 1997 Mar; 46(3):220-30. PubMed ID: 9163267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]