These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 394841)

  • 1. Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization.
    Panek AD; Sampaio AL; Braz GC; Baker SJ; Mattoon JR
    Cell Mol Biol Incl Cyto Enzymol; 1979; 25(5):345-54. PubMed ID: 394841
    [No Abstract]   [Full Text] [Related]  

  • 2. Catabolite inactivation of trehalose synthesis during growth of yeast on maltose.
    Paschoalin VM; Panek AC; Panek AD
    Braz J Med Biol Res; 1987; 20(6):675-83. PubMed ID: 2843252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development.
    Panek AD; Mattoon JR
    Arch Biochem Biophys; 1977 Sep; 183(1):306-16. PubMed ID: 334081
    [No Abstract]   [Full Text] [Related]  

  • 4. Further evidence for the alternative pathway of trehalose synthesis linked to maltose utilization in Saccharomyces.
    Paschoalin VM; Costa-Carvalho VL; Panek AD
    Curr Genet; 1986; 10(10):725-31. PubMed ID: 3447733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of trehalose in Saccharomyces cerevisiae growing on maltose is dependent on the TPS1 gene encoding the UDPglucose-linked trehalose synthase.
    Petit T; François J
    FEBS Lett; 1994 Dec; 355(3):309-13. PubMed ID: 7988695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trehalose and maltose metabolism in yeast transformed by a MAL4 regulatory gene cloned from a constitutive donor strain.
    de Oliveira DE; Arrese M; Kidane G; Panek AD; Mattoon JR
    Curr Genet; 1986; 11(2):97-106. PubMed ID: 3329048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of maltose transport in Saccharomyces cerevisiae.
    Brondijk TH; Konings WN; Poolman B
    Arch Microbiol; 2001 Jul; 176(1-2):96-105. PubMed ID: 11479708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae.
    Paalman JW; Verwaal R; Slofstra SH; Verkleij AJ; Boonstra J; Verrips CT
    FEMS Yeast Res; 2003 May; 3(3):261-8. PubMed ID: 12689634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of energy metabolism in yeast. Inheritance of a pleiotropic mutation causing defects in metabolism of energy reserves, ethanol utilization and formation of cytochrome a.a3.
    Padrão GR; Malamud DR; Panek AD; Mattoon JR
    Mol Gen Genet; 1982; 185(2):255-61. PubMed ID: 7045582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria.
    Agbanyo M; Taylor NF
    Biosci Rep; 1986 Mar; 6(3):309-16. PubMed ID: 3524699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory-deficient state.
    Schamhart DH; Ten Berge AM; Van De Poll KW
    J Bacteriol; 1975 Mar; 121(3):747-52. PubMed ID: 163813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of linoleoyl disaccharides through lipase-catalyzed condensation and their surface activities.
    Chen J; Kimura Y; Adachi S
    J Biosci Bioeng; 2005 Sep; 100(3):274-9. PubMed ID: 16243276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae.
    Entian KD; Zimmermann FK
    J Bacteriol; 1982 Sep; 151(3):1123-8. PubMed ID: 7050076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fermentability of maltose by baker's yeast containing trehalose.
    SUOMALAINEN H; OURA E
    Biochim Biophys Acta; 1956 Jun; 20(3):538-42. PubMed ID: 13341946
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of Hyalophora cecropia fat body hexokinase by hexose phosphates common to the pathways of glycolysis, glycogen and trehalose synthesis.
    Jungreis AM
    Comp Biochem Physiol B; 1976; 53(3):405-13. PubMed ID: 3360
    [No Abstract]   [Full Text] [Related]  

  • 16. In vivo changes of cellulose, trehalose and glycogen during differentiation of Dictyostelium discoideum.
    Rosness PA; Wright BE
    Arch Biochem Biophys; 1974 Sep; 164(1):60-72. PubMed ID: 4372953
    [No Abstract]   [Full Text] [Related]  

  • 17. Alpha-glucosidase synthesis, respiratory enzymes and catabolite repression in yeast. I. The effects of glucose and maltose on inducible alpha-glucosidase synthesis in protoplasts of S. carlsbergensis.
    van Wijk R
    Proc K Ned Akad Wet C; 1968; 71(1):60-71. PubMed ID: 4230530
    [No Abstract]   [Full Text] [Related]  

  • 18. The Kluyver effect for trehalose in Saccharomyces cerevisiae.
    Malluta EF; Decker P; Stambuk BU
    J Basic Microbiol; 2000; 40(3):199-205. PubMed ID: 10957961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation.
    Lillie SH; Pringle JR
    J Bacteriol; 1980 Sep; 143(3):1384-94. PubMed ID: 6997270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A defect in carbon catabolite repression associated with uncontrollable and excessive maltose uptake.
    Entian KD
    Mol Gen Genet; 1980; 179(1):169-75. PubMed ID: 7005623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.