BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3948523)

  • 1. Molecular targets of UVB.
    Jung EG
    Curr Probl Dermatol; 1986; 15():117-24. PubMed ID: 3948523
    [No Abstract]   [Full Text] [Related]  

  • 2. Processing of directly and indirectly ultraviolet-induced DNA damage in human cells.
    Rünger TM; Epe B; Möller K
    Recent Results Cancer Res; 1995; 139():31-42. PubMed ID: 7597299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sister chromatid exchange-related characteristics of excision repair-proficient xeroderma pigmentosum cells.
    Oikawa A; Tohda H
    J Invest Dermatol; 1989 May; 92(5 Suppl):289S-292S. PubMed ID: 2715662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the nuclear matrix in DNA repair.
    Mullenders LH; Venema J; van Hoffen A; Mayne LV; Natarajan AT; van Zeeland AA
    Prog Clin Biol Res; 1990; 340A():223-32. PubMed ID: 2388911
    [No Abstract]   [Full Text] [Related]  

  • 5. Molecular epidemiology of skin cancers: DNA repair and non-melanocytic skin cancer.
    Hall J; Artuso M; English DR
    Ann Ist Super Sanita; 1996; 32(1):43-51. PubMed ID: 8967724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of protein synthesis does not antagonize induction of UV-induced sister-chromatid exchange in xeroderma pigmentosum cells.
    Sono A; Sakaguchi K
    Cell Struct Funct; 1988 Feb; 13(1):39-43. PubMed ID: 2836074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xeroderma Pigmentosum Diagnosis Using a Flow Cytometry-Based Nucleotide Excision Repair Assay.
    Nakano E; Takeuchi S; Ono R; Tsujimoto M; Masaki T; Nishigori C
    J Invest Dermatol; 2018 Feb; 138(2):467-470. PubMed ID: 29024689
    [No Abstract]   [Full Text] [Related]  

  • 8. Relationship between posttranslational modification of transaldolase and catalase deficiency in UV-sensitive repair-deficient xeroderma pigmentosum fibroblasts and SV40-transformed human cells.
    Lachaise F; Martin G; Drougard C; Perl A; Vuillaume M; Wegnez M; Sarasin A; Daya-Grosjean L
    Free Radic Biol Med; 2001 Jun; 30(12):1365-73. PubMed ID: 11390181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different sensitivities to ultraviolet light-induced cytotoxicity and sister chromatid exchanges in xeroderma pigmentosum and Bloom's syndrome fibroblasts.
    Mamada A; Kondo S; Satoh Y
    Photodermatol; 1989 Jun; 6(3):124-30. PubMed ID: 2762203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique DNA repair properties of a xeroderma pigmentosum revertant.
    Cleaver JE; Cortés F; Lutze LH; Morgan WF; Player AN; Mitchell DL
    Mol Cell Biol; 1987 Sep; 7(9):3353-7. PubMed ID: 3118197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal rate of DNA breakage in xeroderma pigmentosum complementation group E cells treated with 8-methoxypsoralen plus near-ultraviolet radiation.
    Bredberg A; Söderhäll S
    Biochim Biophys Acta; 1985 Mar; 824(3):268-71. PubMed ID: 3970936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA repair processes protect human beings from premature solar skin damage: evidence from studies on xeroderma pigmentosum.
    Robbins JH; Moshell AN
    J Invest Dermatol; 1979 Jul; 73(1):102-7. PubMed ID: 448168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of UV-endonuclease-susceptible sites in the 7 complementation groups of xeroderma pigmentosum A through G.
    Zelle B; Lohman PH
    Mutat Res; 1979 Sep; 62(2):363-8. PubMed ID: 503100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of heterogeneity in xeroderma pigmentosum.
    Kim MA; Traupe H
    Arch Dermatol Res; 1980; 269(1):81-5. PubMed ID: 7447492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxic effects of protease inhibitors on human cells. 1. High sensitivity of xeroderma pigmentosum cells to antipain.
    Ishizaki K; Yagi T; Takebe H
    Cancer Lett; 1980 Sep; 10(3):199-205. PubMed ID: 7000335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High levels of dipyrimidine dimers are induced in human skin by solar-simulating UV radiation.
    Bykov VJ; Jansen CT; Hemminki K
    Cancer Epidemiol Biomarkers Prev; 1998 Mar; 7(3):199-202. PubMed ID: 9521432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitomycin C-induced postmitotic fibroblasts retain the capacity to repair pyrimidine photodimers formed after UV-irradiation.
    Niggli HJ; Bayreuther K; Rodemann HP; Röthlisberger R; Francz PI
    Mutat Res; 1989 Jul; 219(4):231-40. PubMed ID: 2505069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenic lesions in photocarcinogenesis: the fate of pyrimidine photoproducts in repair-deficient disorders.
    Cleaver JE
    Photochem Photobiol; 1996 Apr; 63(4):377-9. PubMed ID: 8934741
    [No Abstract]   [Full Text] [Related]  

  • 19. Relation of D.N.A. repair processes to pathological ageing of the nervous system in xeroderma pigmentosum.
    Andrews AD; Barrett SF; Robbins JH
    Lancet; 1976 Jun; 1(7973):1318-20. PubMed ID: 58310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The relationship between the radiosensitivity of DNA replicative synthesis and the formation of sister chromatid exchanges].
    Khomasuridze MM; Pleskach NM; Bil'din VN; Barenfel'd LS; Mikhel'son VM; Zhestianikov VD
    Tsitologiia; 1991; 33(10):99-105. PubMed ID: 1839942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.