These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39488043)

  • 21. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists.
    Bulten W; Balkenhol M; Belinga JA; Brilhante A; Çakır A; Egevad L; Eklund M; Farré X; Geronatsiou K; Molinié V; Pereira G; Roy P; Saile G; Salles P; Schaafsma E; Tschui J; Vos AM; ; van Boven H; Vink R; van der Laak J; Hulsbergen-van der Kaa C; Litjens G
    Mod Pathol; 2021 Mar; 34(3):660-671. PubMed ID: 32759979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Artificial intelligence system shows performance at the level of uropathologists for the detection and grading of prostate cancer in core needle biopsy: an independent external validation study.
    Jung M; Jin MS; Kim C; Lee C; Nikas IP; Park JH; Ryu HS
    Mod Pathol; 2022 Oct; 35(10):1449-1457. PubMed ID: 35487950
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a Deep Learning Algorithm for the Histopathologic Diagnosis and Gleason Grading of Prostate Cancer Biopsies: A Pilot Study.
    Kott O; Linsley D; Amin A; Karagounis A; Jeffers C; Golijanin D; Serre T; Gershman B
    Eur Urol Focus; 2021 Mar; 7(2):347-351. PubMed ID: 31767543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crowdsourcing with the drift diffusion model of decision making.
    Lalvani S; Katsaggelos A
    Sci Rep; 2024 May; 14(1):11311. PubMed ID: 38760397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using multi-label ensemble CNN classifiers to mitigate labelling inconsistencies in patch-level Gleason grading.
    Butt MA; Kaleem MF; Bilal M; Hanif MS
    PLoS One; 2024; 19(7):e0304847. PubMed ID: 38968206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts.
    Nir G; Hor S; Karimi D; Fazli L; Skinnider BF; Tavassoli P; Turbin D; Villamil CF; Wang G; Wilson RS; Iczkowski KA; Lucia MS; Black PC; Abolmaesumi P; Goldenberg SL; Salcudean SE
    Med Image Anal; 2018 Dec; 50():167-180. PubMed ID: 30340027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and Validation of an Artificial Intelligence-Powered Platform for Prostate Cancer Grading and Quantification.
    Huang W; Randhawa R; Jain P; Iczkowski KA; Hu R; Hubbard S; Eickhoff J; Basu H; Roy R
    JAMA Netw Open; 2021 Nov; 4(11):e2132554. PubMed ID: 34730818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes.
    Esteban ÁE; López-Pérez M; Colomer A; Sales MA; Molina R; Naranjo V
    Comput Methods Programs Biomed; 2019 Sep; 178():303-317. PubMed ID: 31416557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer.
    Marrón-Esquivel JM; Duran-Lopez L; Linares-Barranco A; Dominguez-Morales JP
    Comput Biol Med; 2023 Jun; 159():106856. PubMed ID: 37075600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Artificial Intelligence-based Support Tool for Automation and Standardisation of Gleason Grading in Prostate Biopsies.
    Marginean F; Arvidsson I; Simoulis A; Christian Overgaard N; Åström K; Heyden A; Bjartell A; Krzyzanowska A
    Eur Urol Focus; 2021 Sep; 7(5):995-1001. PubMed ID: 33303404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crowdsourcing for Machine Learning in Public Health Surveillance: Lessons Learned From Amazon Mechanical Turk.
    Shakeri Hossein Abad Z; Butler GP; Thompson W; Lee J
    J Med Internet Res; 2022 Jan; 24(1):e28749. PubMed ID: 35040794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens.
    Nagpal K; Foote D; Tan F; Liu Y; Chen PC; Steiner DF; Manoj N; Olson N; Smith JL; Mohtashamian A; Peterson B; Amin MB; Evans AJ; Sweet JW; Cheung C; van der Kwast T; Sangoi AR; Zhou M; Allan R; Humphrey PA; Hipp JD; Gadepalli K; Corrado GS; Peng LH; Stumpe MC; Mermel CH
    JAMA Oncol; 2020 Sep; 6(9):1372-1380. PubMed ID: 32701148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discriminatory Gleason grade group signatures of prostate cancer: An application of machine learning methods.
    Mokoatle M; Mapiye D; Marivate V; Hayes VM; Bornman R
    PLoS One; 2022; 17(6):e0267714. PubMed ID: 35679280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning from crowds for automated histopathological image segmentation.
    López-Pérez M; Morales-Álvarez P; Cooper LAD; Felicelli C; Goldstein J; Vadasz B; Molina R; Katsaggelos AK
    Comput Med Imaging Graph; 2024 Mar; 112():102327. PubMed ID: 38194768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of Artificial Intelligence-Based Gleason Grading Algorithms "in the Wild".
    Faryna K; Tessier L; Retamero J; Bonthu S; Samanta P; Singhal N; Kammerer-Jacquet SF; Radulescu C; Agosti V; Collin A; Farre X; Fontugne J; Grobholz R; Hoogland AM; Moreira Leite KR; Oktay M; Polonia A; Roy P; Salles PG; van der Kwast TH; van Ipenburg J; van der Laak J; Litjens G
    Mod Pathol; 2024 Nov; 37(11):100563. PubMed ID: 39025402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated Gleason grading of prostate cancer tissue microarrays via deep learning.
    Arvaniti E; Fricker KS; Moret M; Rupp N; Hermanns T; Fankhauser C; Wey N; Wild PJ; Rüschoff JH; Claassen M
    Sci Rep; 2018 Aug; 8(1):12054. PubMed ID: 30104757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO.
    Morales-Alvarez P; Ruiz P; Coughlin S; Molina R; Katsaggelos AK
    IEEE Trans Pattern Anal Mach Intell; 2022 Mar; 44(3):1534-1551. PubMed ID: 32956038
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer.
    Amgad M; Atteya LA; Hussein H; Mohammed KH; Hafiz E; Elsebaie MAT; Alhusseiny AM; AlMoslemany MA; Elmatboly AM; Pappalardo PA; Sakr RA; Mobadersany P; Rachid A; Saad AM; Alkashash AM; Ruhban IA; Alrefai A; Elgazar NM; Abdulkarim A; Farag AA; Etman A; Elsaeed AG; Alagha Y; Amer YA; Raslan AM; Nadim MK; Elsebaie MAT; Ayad A; Hanna LE; Gadallah A; Elkady M; Drumheller B; Jaye D; Manthey D; Gutman DA; Elfandy H; Cooper LAD
    Gigascience; 2022 May; 11():. PubMed ID: 35579553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automated gleason grading on prostate biopsy slides by statistical representations of homology profile.
    Yan C; Nakane K; Wang X; Fu Y; Lu H; Fan X; Feldman MD; Madabhushi A; Xu J
    Comput Methods Programs Biomed; 2020 Oct; 194():105528. PubMed ID: 32470903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.