BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 3949767)

  • 1. Epoxidation of androsta-5,16-dien-3 beta-ol by hepatic microsomal lipid peroxidation.
    Watabe T; Kobayashi K; Saitoh Y; Komatsu T; Ozawa N; Tsubaki A; Endoh K; Hiratsuka A
    J Biol Chem; 1986 Mar; 261(7):3200-7. PubMed ID: 3949767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The obligatory intermediacy of 16,17 alpha- and 16,17 beta-epoxides in the biotransformation of androsta-5,16-dien-3 beta-ol to androst-5-ene-3 beta, 16 alpha, 17 beta- and -3 beta, 16 beta, 17 alpha-triols by male rat liver microsomes.
    Watabe T; Komatsu T; Kobayashi K; Isobe M; Ozawa N; Saitoh Y
    J Biol Chem; 1985 Jul; 260(15):8716-20. PubMed ID: 4019450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanism for epoxidation of cholesterol by hepatic microsomal lipid hydroperoxides.
    Watabe T; Tsubaki A; Isobe M; Ozawa N; Hiratsuka A
    Biochim Biophys Acta; 1984 Aug; 795(1):60-6. PubMed ID: 6466699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference in epoxides formation and their further metabolism between delta 9- and delta 8-tetrahydrocannabinols by human liver microsomes.
    Yamamoto I; Narimatsu S; Shimonishi T; Watanabe K; Yoshimura H
    J Pharmacobiodyn; 1984 Apr; 7(4):254-62. PubMed ID: 6088753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epoxidation of the lindane metabolite, beta-PCCH, by human- and rat-liver microsomes.
    Fitzloff JF; Pan JC
    Xenobiotica; 1984 Jul; 14(7):599-604. PubMed ID: 6209866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholesterol alpha- and beta-epoxides as obligatory intermediates in the hepatic microsomal metabolism of cholesterol to cholestanetriol.
    Watabe T; Kanai M; Isobe M; Ozawa N
    Biochim Biophys Acta; 1980 Aug; 619(2):414-9. PubMed ID: 7407222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hepatic microsomal biotransformation of delta 5-steroids to 5 alpha, 6 beta-glycols via alpha- and beta-epoxides.
    Watabe T; Kanai M; Isobe M; Ozawa N
    J Biol Chem; 1981 Mar; 256(6):2900-7. PubMed ID: 7204381
    [No Abstract]   [Full Text] [Related]  

  • 8. Biotransformation of allylbenzene analogues in vivo and in vitro through the epoxide-diol pathway.
    Delaforge M; Janiaud P; Levi P; Morizot JP
    Xenobiotica; 1980 Oct; 10(10):737-44. PubMed ID: 7456490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective formations of K-region and non-K-region epoxides in the metabolism of chrysene by rat liver microsomal cytochrome P-450 isozymes.
    Yang SK; Bao ZP
    Mol Pharmacol; 1987 Jul; 32(1):73-80. PubMed ID: 3037304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct rat hepatic microsomal epoxide hydrolases catalyze the hydration of cholesterol 5,6 alpha-oxide and certain xenobiotic alkene and arene oxides.
    Levin W; Michaud DP; Thomas PE; Jerina DM
    Arch Biochem Biophys; 1983 Feb; 220(2):485-94. PubMed ID: 6401984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid peroxidation dependent aldrin epoxidation in liver microsomes, hepatocytes and granulation tissue cells.
    Lang B; Maier P
    Biochem Biophys Res Commun; 1986 Jul; 138(1):24-32. PubMed ID: 3741413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and metabolism in vitro of 5,6-epoxides of cholesterol and beta-sitosterol.
    Aringer L; Eneroth P
    J Lipid Res; 1974 Jul; 15(4):389-98. PubMed ID: 4152888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin K epoxide reductase activity in the metabolism of epoxides.
    Liptay-Reuter I; Dose K; Guenthner T; Wörner W; Oesch F
    Biochem Pharmacol; 1985 Aug; 34(15):2617-20. PubMed ID: 4015704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential induction of cytosolic epoxide hydrolase, microsomal epoxide hydrolase, and glutathione S-transferase activities.
    Hammock BD; Ota K
    Toxicol Appl Pharmacol; 1983 Nov; 71(2):254-65. PubMed ID: 6636190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel metabolic pathways for linoleic and arachidonic acid metabolism.
    Moghaddam M; Motoba K; Borhan B; Pinot F; Hammock BD
    Biochim Biophys Acta; 1996 Aug; 1290(3):327-39. PubMed ID: 8765137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of polycyclic aromatic hydrocarbon derivatives to ultimate carcinogens during lipid peroxidation.
    Dix TA; Marnett LJ
    Science; 1983 Jul; 221(4605):77-9. PubMed ID: 6304879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse liver microsomal cholesterol epoxide hydrolase: a specific inhibition of its activity by 5,6 alpha-Imino-5 alpha-cholestan-3 alpha-OL.
    Watabe T; Komatsu T; Isobe M; Tsubaki A
    Chem Biol Interact; 1983; 44(1-2):143-54. PubMed ID: 6406079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation.
    Esterbauer H; Benedetti A; Lang J; Fulceri R; Fauler G; Comporti M
    Biochim Biophys Acta; 1986 Mar; 876(1):154-66. PubMed ID: 3081043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P-450-catalyzed stereoselective epoxidation at the K region of benz[a]anthracene and benzo[a]pyrene.
    Yang SK; Chiu PL
    Arch Biochem Biophys; 1985 Aug; 240(2):546-52. PubMed ID: 3839642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient epoxidation of unsaturated fatty acids by a hydroperoxide-dependent oxygenase.
    Blée E; Schuber F
    J Biol Chem; 1990 Aug; 265(22):12887-94. PubMed ID: 2376578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.