These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39497969)
1. Machine learning for urban land use/ cover mapping: Comparison of artificial neural network, random forest and support vector machine, a case study of Dilla town. Kasahun M; Legesse A Heliyon; 2024 Oct; 10(20):e39146. PubMed ID: 39497969 [No Abstract] [Full Text] [Related]
2. Use of machine learning-based classification algorithms in the monitoring of Land Use and Land Cover practices in a hilly terrain. Parashar D; Kumar A; Palni S; Pandey A; Singh A; Singh AP Environ Monit Assess; 2023 Dec; 196(1):8. PubMed ID: 38049547 [TBL] [Abstract][Full Text] [Related]
3. Demi-decadal land use land cover change analysis of Mizoram, India, with topographic correction using machine learning algorithm. Gupta P; Shukla DP Environ Sci Pollut Res Int; 2024 May; 31(21):30569-30591. PubMed ID: 38609681 [TBL] [Abstract][Full Text] [Related]
4. Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq. Rash A; Mustafa Y; Hamad R Heliyon; 2023 Nov; 9(11):e21253. PubMed ID: 37954393 [TBL] [Abstract][Full Text] [Related]
5. Assessment of agricultural prospects in relation to land use change and population pressure on a spatiotemporal framework. Biswas G; Sengupta A Environ Sci Pollut Res Int; 2022 Jun; 29(28):43267-43286. PubMed ID: 35091927 [TBL] [Abstract][Full Text] [Related]
6. Spatial and temporal classification and prediction of LULC in Brahmani and Baitarni basin using integrated cellular automata models. Indraja G; Aashi A; Vema VK Environ Monit Assess; 2024 Jan; 196(2):117. PubMed ID: 38183538 [TBL] [Abstract][Full Text] [Related]
7. Decadal Trend in Agricultural Abandonment and Woodland Expansion in an Agro-Pastoral Transition Band in Northern China. Wang C; Gao Q; Wang X; Yu M PLoS One; 2015; 10(11):e0142113. PubMed ID: 26562303 [TBL] [Abstract][Full Text] [Related]
8. Fusion of spectral and topographic features for land use mapping using a machine learning framework for a regional scale application. Sankalpa JKS; Rathnayaka AMRWSD; Ishani PGN; Liyanaarachchi LATS; Gayan MWH; Wijesuriya W; Karunaratne S Environ Monit Assess; 2024 Oct; 196(11):1030. PubMed ID: 39377874 [TBL] [Abstract][Full Text] [Related]
9. Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Kulithalai Shiyam Sundar P; Deka PC Environ Sci Pollut Res Int; 2022 Dec; 29(57):86220-86236. PubMed ID: 34767164 [TBL] [Abstract][Full Text] [Related]
10. Analysis of land use and land cover change using machine learning algorithm in Yola North Local Government Area of Adamawa State, Nigeria. Aliyu A; Isma'il M; Zubairu SM; Gwio-Kura IY; Abdullahi A; Abubakar BA; Mansur M Environ Monit Assess; 2023 Nov; 195(12):1470. PubMed ID: 37962723 [TBL] [Abstract][Full Text] [Related]
11. Analyzing Land Use/Land Cover Changes Using Google Earth Engine and Random Forest Algorithm and Their Implications to the Management of Land Degradation in the Upper Tekeze Basin, Ethiopia. Fentaw AE; Abegaz A ScientificWorldJournal; 2024; 2024():3937558. PubMed ID: 39109328 [TBL] [Abstract][Full Text] [Related]
12. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region. Ullah S; Ahmad K; Sajjad RU; Abbasi AM; Nazeer A; Tahir AA J Environ Manage; 2019 Sep; 245():348-357. PubMed ID: 31158687 [TBL] [Abstract][Full Text] [Related]
13. Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh. Biswas J; Jobaer MA; Haque SF; Islam Shozib MS; Limon ZA Heliyon; 2023 Nov; 9(11):e21245. PubMed ID: 37954389 [TBL] [Abstract][Full Text] [Related]
14. Use of support vector machine and cellular automata methods to evaluate impact of irrigation project on LULC. Halder S; Das S; Basu S Environ Monit Assess; 2022 Oct; 195(1):3. PubMed ID: 36264438 [TBL] [Abstract][Full Text] [Related]
15. Empowering real-time flood impact assessment through the integration of machine learning and Google Earth Engine: a comprehensive approach. Khan NS; Roy SK; Talukdar S; Billah M; Iqbal A; Zzaman RU; Chowdhury A; Mahtab SB; Mallick J Environ Sci Pollut Res Int; 2024 Sep; 31(41):53877-53892. PubMed ID: 38568312 [TBL] [Abstract][Full Text] [Related]
16. Modelling of land use land cover changes using machine learning and GIS techniques: a case study in El-Fayoum Governorate, Egypt. Atef I; Ahmed W; Abdel-Maguid RH Environ Monit Assess; 2023 May; 195(6):637. PubMed ID: 37133528 [TBL] [Abstract][Full Text] [Related]
17. Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices. Mozaffaree Pour N; Karasov O; Burdun I; Oja T Environ Monit Assess; 2022 Jul; 194(8):584. PubMed ID: 35829789 [TBL] [Abstract][Full Text] [Related]
18. Mapping the spatial distribution of the dengue vector Rahman MS; Pientong C; Zafar S; Ekalaksananan T; Paul RE; Haque U; Rocklöv J; Overgaard HJ One Health; 2021 Dec; 13():100358. PubMed ID: 34934797 [TBL] [Abstract][Full Text] [Related]
19. Improvement in the Accuracy of the Postclassification of Land Use and Land Cover Using Landsat 8 Data Based on the Majority of Segment-Based Filtering Approach. Yulianto F; Nugroho G; Aruba Chulafak G; Suwarsono S ScientificWorldJournal; 2021; 2021():6658818. PubMed ID: 33828441 [TBL] [Abstract][Full Text] [Related]
20. Spatio-temporal classification of land use and land cover and its changes in Kerala using remote sensing and machine learning approach. Vijay A; Varija K Environ Monit Assess; 2024 Apr; 196(5):459. PubMed ID: 38634958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]