These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3949818)

  • 21. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages.
    Rao RD; David KS; Wang M
    Spine (Phila Pa 1976); 2005 Dec; 30(24):2772-6. PubMed ID: 16371901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lumbar intervertebral disc and ligament deformations measured in vivo.
    Pearcy MJ; Tibrewal SB
    Clin Orthop Relat Res; 1984 Dec; (191):281-6. PubMed ID: 6499321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Midlumbar lateral flexion stability measured in healthy volunteers by in vivo fluoroscopy.
    Mellor FE; Muggleton JM; Bagust J; Mason W; Thomas PW; Breen AC
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E811-7. PubMed ID: 19829245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Oxland TR; Yamamoto I; Crisco JJ
    J Bone Joint Surg Am; 1994 Mar; 76(3):413-24. PubMed ID: 8126047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mechanical properties of the canine lumbar disc and motion segment.
    Zimmerman MC; Vuono-Hawkins M; Parsons JR; Carter FM; Gutteling E; Lee CK; Langrana NA
    Spine (Phila Pa 1976); 1992 Feb; 17(2):213-20. PubMed ID: 1553593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Posteriorly directed shear loads and disc degeneration affect the torsional stiffness of spinal motion segments: a biomechanical modeling study.
    Homminga J; Lehr AM; Meijer GJ; Janssen MM; Schlösser TP; Verkerke GJ; Castelein RM
    Spine (Phila Pa 1976); 2013 Oct; 38(21):E1313-9. PubMed ID: 23797503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis.
    Demetropoulos CK; Sengupta DK; Knaub MA; Wiater BP; Abjornson C; Truumees E; Herkowitz HN
    Spine (Phila Pa 1976); 2010 Jan; 35(1):26-31. PubMed ID: 20042953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distraction and compression loads enhance spine torsional stiffness.
    Goodwin RR; James KS; Daniels AU; Dunn HK
    J Biomech; 1994 Aug; 27(8):1049-57. PubMed ID: 8089159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis.
    Cholewicki J; Crisco JJ; Oxland TR; Yamamoto I; Panjabi MM
    Spine (Phila Pa 1976); 1996 Nov; 21(21):2421-8. PubMed ID: 8923626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Needle puncture in rabbit functional spinal units alters rotational biomechanics.
    Hartman RA; Bell KM; Quan B; Nuzhao Y; Sowa GA; Kang JD
    J Spinal Disord Tech; 2015 Apr; 28(3):E146-53. PubMed ID: 25370985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony features: An in vitro full-field analysis.
    Palanca M; Ruspi ML; Cristofolini L; Liebsch C; Villa T; Brayda-Bruno M; Galbusera F; Wilke HJ; La Barbera L
    PLoS One; 2020; 15(1):e0227210. PubMed ID: 31935225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology.
    Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK
    J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion.
    Potvin JR; McGill SM; Norman RW
    Spine (Phila Pa 1976); 1991 Sep; 16(9):1099-107. PubMed ID: 1948399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study.
    Fujiwara A; An HS; Lim TH; Haughton VM
    Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear gross response analysis of a lumbar motion segment in combined sagittal loadings.
    Shirazi-Adl A; Drouin G
    J Biomech Eng; 1988 Aug; 110(3):216-22. PubMed ID: 3172742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residual sagittal motion after lumbar fusion: a finite element analysis with implications on radiographic flexion-extension criteria.
    Bono CM; Khandha A; Vadapalli S; Holekamp S; Goel VK; Garfin SR
    Spine (Phila Pa 1976); 2007 Feb; 32(4):417-22. PubMed ID: 17304131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity.
    Liu Z; Tsai TY; Wang S; Wu M; Zhong W; Li JS; Cha T; Wood K; Li G
    J Biomech; 2016 Feb; 49(3):371-5. PubMed ID: 26805460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanical model of human spinal motion segments.
    Wilke HJ; Russo G; Schmitt H; Claes LE
    Biomed Tech (Berl); 1997 Nov; 42(11):327-31. PubMed ID: 9435146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.