BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 3949878)

  • 1. Aggregating factor from Torpedo electric organ induces patches containing acetylcholine receptors, acetylcholinesterase, and butyrylcholinesterase on cultured myotubes.
    Wallace BG
    J Cell Biol; 1986 Mar; 102(3):783-94. PubMed ID: 3949878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of agrin, a synaptic organizing protein from Torpedo electric organ.
    Nitkin RM; Smith MA; Magill C; Fallon JR; Yao YM; Wallace BG; McMahan UJ
    J Cell Biol; 1987 Dec; 105(6 Pt 1):2471-8. PubMed ID: 2826489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor.
    Wallace BG; Nitkin RM; Reist NE; Fallon JR; Moayeri NN; McMahan UJ
    Nature; 1985 Jun 13-19; 315(6020):574-7. PubMed ID: 4010772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells.
    Godfrey EW; Nitkin RM; Wallace BG; Rubin LL; McMahan UJ
    J Cell Biol; 1984 Aug; 99(2):615-27. PubMed ID: 6746740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine receptor-aggregating factor is similar to molecules concentrated at neuromuscular junctions.
    Fallon JR; Nitkin RM; Reist NE; Wallace BG; McMahan UJ
    Nature; 1985 Jun 13-19; 315(6020):571-4. PubMed ID: 3892302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine receptor-aggregating proteins are associated with the extracellular matrix of many tissues in Torpedo.
    Godfrey EW; Dietz ME; Morstad AL; Wallskog PA; Yorde DE
    J Cell Biol; 1988 Apr; 106(4):1263-72. PubMed ID: 2834403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular components of the synaptic basal lamina that direct differentiation of regenerating neuromuscular junctions.
    Nitkin RM; Wallace BG; Spira ME; Godfrey EW; McMahan UJ
    Cold Spring Harb Symp Quant Biol; 1983; 48 Pt 2():653-65. PubMed ID: 6586382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor neurons contain agrin-like molecules.
    Magill-Solc C; McMahan UJ
    J Cell Biol; 1988 Nov; 107(5):1825-33. PubMed ID: 2846587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a 17 S asymmetric butyrylcholinesterase in chick muscle by monoclonal antibodies.
    Tsim KW; Randall WR; Barnard EA
    Neurosci Lett; 1988 Mar; 86(2):245-9. PubMed ID: 3368125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus.
    Wallace BG
    J Neurosci; 1989 Apr; 9(4):1294-302. PubMed ID: 2539442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-homologies and structural differences between human cholinesterases revealed by antibodies against cDNA-produced human butyrylcholinesterase peptides.
    Dreyfus P; Zevin-Sonkin D; Seidman S; Prody C; Zisling R; Zakut H; Soreq H
    J Neurochem; 1988 Dec; 51(6):1858-67. PubMed ID: 2460589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system.
    Smith MA; Yao YM; Reist NE; Magill C; Wallace BG; McMahan UJ
    J Exp Biol; 1987 Sep; 132():223-30. PubMed ID: 2828510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester.
    Wallace BG
    J Cell Biol; 1988 Jul; 107(1):267-78. PubMed ID: 2839519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the amount of a 34K Ca2+-dependent membrane binding protein (calelectrin).
    Saitoh T; Miret O
    J Neurochem; 1987 Mar; 48(3):745-51. PubMed ID: 2433394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: I. Solubility and aggregation properties.
    Bon S; Toutant JP; Méflah K; Massoulié J
    J Neurochem; 1988 Sep; 51(3):776-85. PubMed ID: 3411326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal lamina components are concentrated in premuscle masses and at early acetylcholine receptor clusters in chick embryo hindlimb muscles.
    Godfrey EW; Siebenlist RE; Wallskog PA; Walters LM; Bolender DL; Yorde DE
    Dev Biol; 1988 Dec; 130(2):471-86. PubMed ID: 2848741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of acetylcholine receptors is a necessary condition for normal accumulation of acetylcholinesterase during in vitro neuromuscular synaptogenesis.
    De La Porte S; Chaubourt E; Fabre F; Poulas K; Chapron J; Eymard B; Tzartos S; Koenig J
    Eur J Neurosci; 1998 May; 10(5):1631-43. PubMed ID: 9751136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic or postsynaptic origin of acetylcholinesterase at neuromuscular junctions? An immunological study in heterologous nerve-muscle cultures.
    De La Porte S; Vallette FM; Grassi J; Vigny M; Koenig J
    Dev Biol; 1986 Jul; 116(1):69-77. PubMed ID: 3525279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of acetylcholine receptor clusters in chick myotubes: migration or new insertion?
    Dubinsky JM; Loftus DJ; Fischbach GD; Elson EL
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1733-43. PubMed ID: 2793937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle.
    Carr C; Fischbach GD; Cohen JB
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1753-64. PubMed ID: 2793938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.