BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 3949980)

  • 1. Pathways of adenine nucleotide catabolism in erythrocytes.
    Bontemps F; Van den Berghe G; Hers HG
    J Clin Invest; 1986 Mar; 77(3):824-30. PubMed ID: 3949980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotide catabolism in human erythrocytes: pathways and regulation.
    van den Berghe G; Bontemps F
    Biomed Biochim Acta; 1990; 49(2-3):S117-22. PubMed ID: 2167076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catabolism of adenine nucleotides in rabbit blood cells.
    Rapoport I; Drung I; Rapoport SM
    Biomed Biochim Acta; 1990; 49(1):11-6. PubMed ID: 2360900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The breakdown of adenine nucleotides in glucose-depleted human red cells.
    Rapoport I; Rapoport S; Maretzki D; Elsner R
    Acta Biol Med Ger; 1979; 38(10):1419-29. PubMed ID: 44952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inosine, pyruvate, and inorganic phosphate on 2,3-diphosphoglycerate, adenine, and hypoxanthine nucleotide synthesis in outdated human erythrocytes.
    Zachara B
    J Lab Clin Med; 1975 Mar; 85(3):436-44. PubMed ID: 1117206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of AMP in erythrocytes of man. Evidence for a cytosolic phosphatase activity.
    Rapoport I; Rapoport SM; Gerber G
    Biomed Biochim Acta; 1987; 46(5):317-29. PubMed ID: 3499148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated degradation of adenine nucleotide in erythrocytes of patients with chronic renal failure.
    Marlewski M; Smolenski RT; Szolkiewicz M; Aleksandrowicz Z; Rutkowski B; Swierczynski J
    Mol Cell Biochem; 2000 Oct; 213(1-2):93-7. PubMed ID: 11129963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the ammonium ion and adenosine on glucose metabolism in preserved human erythrocytes.
    Debski B
    Acta Physiol Pol; 1981; 32(1):73-81. PubMed ID: 7246209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and metabolism of adenosine in human erythrocytes: effect of transport inhibitors and regulation by phosphate.
    Plagemann PG
    J Cell Physiol; 1986 Sep; 128(3):491-500. PubMed ID: 3488996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosolic purine 5'-nucleotidases of rat liver and human red blood cells: regulatory properties and role in AMP dephosphorylation.
    Van den Berghe G; Bontemps F; Vincent MF
    Adv Enzyme Regul; 1988; 27():297-311. PubMed ID: 2854949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion].
    Schauer M; Heinrich R; Rapoport SM
    Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways of adenine nucleotide catabolism in human erythrocytes.
    Bontemps F; Van den Berghe G; Hers HG
    Adv Exp Med Biol; 1986; 195 Pt B():329-36. PubMed ID: 3490125
    [No Abstract]   [Full Text] [Related]  

  • 14. Variations of adenine nucleotide levels in normal and pathologic human erythrocytes exposed to oxidative stress.
    Bozzi A; Martini F; Leonardi F; Strom R
    Biochem Mol Biol Int; 1994 Jan; 32(1):95-103. PubMed ID: 8012294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different relationships between cellular adenosine or 3'-deoxyadenosine phosphorylation and cellular adenine ribonucleotide catabolism may be obtained.
    Overgaard-Hansen K; Klenow H
    J Cell Physiol; 1993 Jan; 154(1):71-9. PubMed ID: 8419409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions.
    Plagemann PG; Wohlhueter RM; Kraupp M
    Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of inosine 5'-monophosphate in human erythrocytes incubated with inosine.
    Tomoda A; Yagawa K; Yoneyama Y
    Biomed Biochim Acta; 1987; 46(2-3):S280-4. PubMed ID: 2439075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways of adenine nucleotide catabolism in primary rat muscle cultures.
    Zoref-Shani E; Shainberg A; Sperling O
    Biochim Biophys Acta; 1987 Dec; 926(3):287-95. PubMed ID: 2825800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of adenine nucleotides in the erythrocytes of patients with chronic renal failure.
    Smoleński RT; Marlewski M
    Acta Biochim Pol; 1990; 37(1):153-7. PubMed ID: 2087906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of phenylhydrazine on red blood cell metabolism.
    Magnani M; Rossi L; Cucchiarini L; Stocchi V; Fornaini G
    Cell Biochem Funct; 1988 Jul; 6(3):175-82. PubMed ID: 3409478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.