BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3950084)

  • 1. Age-dependent occurrence of an ascending axon on the omega neuron of the cricket, Teleogryllus oceanicus.
    Atkins G; Pollack GS
    J Comp Neurol; 1986 Jan; 243(4):527-34. PubMed ID: 3950084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets.
    Atkins G; Pollack GS
    J Comp Neurol; 1987 Dec; 266(3):398-412. PubMed ID: 3693618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies.
    Mason AC; Forrest TG; Hoy RR
    J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of neck muscle motor neurons in a cricket and a locust.
    Honegger HW; Altman JS; Kien J; Müller-Tautz R; Pollerberg E
    J Comp Neurol; 1984 Dec; 230(4):517-35. PubMed ID: 6520249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of inhibitory timing on contrast enhancement in auditory circuits in crickets (Teleogryllus oceanicus).
    Faulkes Z; Pollack GS
    J Neurophysiol; 2000 Sep; 84(3):1247-55. PubMed ID: 10979999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs.
    Hardt M; Watson AH
    J Comp Neurol; 1994 Jul; 345(4):481-95. PubMed ID: 7962696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents.
    Hennig RM
    J Comp Physiol A; 1988 May; 163(1):135-43. PubMed ID: 3385665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera.
    Stritih N; Stumpner A
    Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron.
    Marsat G; Pollack GS
    J Neurophysiol; 2004 Aug; 92(2):939-48. PubMed ID: 15044517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental origins of the cricket giant interneuron system.
    Jacobs GA; Murphey RK
    J Comp Neurol; 1987 Nov; 265(1):145-57. PubMed ID: 3693602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological study of flight motor neurons in the cricket.
    Wang S; Robertson RM
    J Comp Neurol; 1989 Jan; 279(2):272-80. PubMed ID: 2913069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of auditory deafferentation on the synaptic connectivity of a pair of identified interneurons in adult field crickets.
    Brodfuehrer PD; Hoy RR
    J Neurobiol; 1988 Jan; 19(1):17-38. PubMed ID: 3346652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound sensitive neurons in the cricket brain.
    Brodfuehrer PD; Hoy RR
    J Comp Physiol A; 1990 Mar; 166(5):651-62. PubMed ID: 2341990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae).
    Stritih N
    J Comp Neurol; 2009 Oct; 516(6):519-32. PubMed ID: 19673004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology of antennal motoneurons in the brains of two crickets, Gryllus bimaculatus and Gryllus campestris.
    Honegger HW; Allgäuer C; Klepsch U; Welker J
    J Comp Neurol; 1990 Jan; 291(2):256-68. PubMed ID: 2298934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and physiological properties of the giant interneuron of the hermit crab (Pagurus pollicaris).
    Stephens PJ
    J Neurobiol; 1985 Sep; 16(5):361-72. PubMed ID: 4045440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional changes in an identified cricket neuron after separation from the soma. I. Structural changes.
    Clark RD
    J Comp Neurol; 1976 Nov; 170(2):253-65. PubMed ID: 62768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.