These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39501)

  • 21. Concentration of poliovirus from tap water onto membrane filters with aluminum chloride at ambient pH levels.
    Farrah SR; Goyal SM; Gerba CP; Wallis C; Melnick JL
    Appl Environ Microbiol; 1978 Mar; 35(3):624-6. PubMed ID: 25048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concentration of enteroviruses from large volumes of water.
    Sobsey MD; Wallis C; Henderson M; Melnick JL
    Appl Microbiol; 1973 Oct; 26(4):529-34. PubMed ID: 16349972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of virus in water: sensitivity of the tentative standard method for drinking water.
    Hill WF; Jakubowski W; Akin EW; Clarke NA
    Appl Environ Microbiol; 1976 Feb; 31(2):254-61. PubMed ID: 187116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wound fiberglass depth filters as a less expensive approach for the concentration of viruses from water.
    Payment P; Trudel M
    Can J Microbiol; 1988 Mar; 34(3):271-2. PubMed ID: 2843272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of humic and fulvic acids on poliovirus concentration from water by microporous filtration.
    Sobsey MD; Hickey AR
    Appl Environ Microbiol; 1985 Feb; 49(2):259-64. PubMed ID: 2984989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacteriophage concentration from water by filter chromatography.
    Farber FE; Gradwohl SE; Sanford PB; Tobin MJ; Lee KJ; Gerba CP
    J Virol Methods; 1983 Dec; 7(5-6):297-304. PubMed ID: 6677647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Research on coronaviruses in water. I. Adsorption and elution of the coronavirus on glass powder].
    Collomb J; Laporte J; Vautherot JF; Schwartzbrod L
    Virologie; 1986; 37(2):95-105. PubMed ID: 3727400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and application of new positively charged filters for recovery of bacteriophages from water.
    Borrego JJ; Cornax R; Preston DR; Farrah SR; McElhaney B; Bitton G
    Appl Environ Microbiol; 1991 Apr; 57(4):1218-22. PubMed ID: 2059044
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virus in water. II. Evaluation of membrane cartridge filters for recovering low multiplicities of poliovirus from water.
    Hill WF; Akin EW; Benton WH; Metcalf TG
    Appl Microbiol; 1972 May; 23(5):880-8. PubMed ID: 4338005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glass wool filters for concentrating waterborne viruses and agricultural zoonotic pathogens.
    Millen HT; Gonnering JC; Berg RK; Spencer SK; Jokela WE; Pearce JM; Borchardt JS; Borchardt MA
    J Vis Exp; 2012 Mar; (61):e3930. PubMed ID: 22415031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of acidic elution to virus concentration using electropositive filters.
    Haramoto E; Katayama H
    Food Environ Virol; 2013 Mar; 5(1):77-80. PubMed ID: 23412722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The development of point-of-use water filters as sampling devices in bioforensics: extent of microbial sorption and elution.
    Sedillo JL; Quintana A; Souza K; Oshima KH; Smith GB
    J Environ Monit; 2008 Jun; 10(6):718-23. PubMed ID: 18528538
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a method for concentration of rotavirus and its application to recovery of rotaviruses from estuarine waters.
    Rao VC; Metcalf TG; Melnick JL
    Appl Environ Microbiol; 1986 Sep; 52(3):484-8. PubMed ID: 3021057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of four microporous filters for concentrating viruses from drinking water.
    Jakubowski W; Hill WF; Clarke NA
    Appl Microbiol; 1975 Jul; 30(1):58-65. PubMed ID: 167662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An improved method for the concentration of rotaviruses from large volumes of water.
    Toranzos GA; Gerba CP
    J Virol Methods; 1989; 24(1-2):131-40. PubMed ID: 2547811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of salts on virus adsorption to microporous filters.
    Lukasik J; Scott TM; Andryshak D; Farrah SR
    Appl Environ Microbiol; 2000 Jul; 66(7):2914-20. PubMed ID: 10877786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Concentration of coliphages from large volumes of water and wastewater.
    Goyal SM; Zerda KS; Gerba CP
    Appl Environ Microbiol; 1980 Jan; 39(1):85-91. PubMed ID: 7356323
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concentration of enteroviruses from estuarine water.
    Farrah SR; Goyal SM; Gerba CP; Wallis C; Melnick JL
    Appl Environ Microbiol; 1977 May; 33(5):1192-6. PubMed ID: 18088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Survival of enteric viruses adsorbed on glass microfibers during postal transport].
    Joret JC; Block JC
    Can J Microbiol; 1981 Feb; 27(2):246-8. PubMed ID: 6260323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elution and reconcentration of coliphages in water from positively charged membrane filters with urea-arginine phosphate buffer.
    Jothikumar N; Cliver DO
    J Virol Methods; 1997 May; 65(2):281-6. PubMed ID: 9186952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.