These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 39502)
1. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Hou CT; Patel R; Laskin AI; Barnabe N Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502 [TBL] [Abstract][Full Text] [Related]
2. Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria. Hou CT; Patel RN; Laski AI; Marczak I; Barnabe N Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282 [TBL] [Abstract][Full Text] [Related]
3. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria. Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P J Bacteriol; 1979 Aug; 139(2):675-9. PubMed ID: 222739 [TBL] [Abstract][Full Text] [Related]
4. Microbial oxidation of gaseous hydrocarbons: production of methyl ketones from their corresponding secondary alcohols by methane- and methanol-grown microbes. Hou CT; Patel R; Laskin AI; Barnabe N; Marczak I Appl Environ Microbiol; 1979 Jul; 38(1):135-42. PubMed ID: 39503 [TBL] [Abstract][Full Text] [Related]
5. Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria. Hou CT; Patel R; Laskin AI; Barnabe N; Barist I Appl Environ Microbiol; 1983 Jul; 46(1):171-7. PubMed ID: 16346338 [TBL] [Abstract][Full Text] [Related]
6. Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria. Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P Appl Environ Microbiol; 1980 Apr; 39(4):720-6. PubMed ID: 16345537 [TBL] [Abstract][Full Text] [Related]
7. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Sullivan JP; Dickinson D; Chase HA Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367 [TBL] [Abstract][Full Text] [Related]
8. Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26. Patel RN; Hou CT; Laskin AI; Felix A Appl Environ Microbiol; 1982 Nov; 44(5):1130-7. PubMed ID: 16346133 [TBL] [Abstract][Full Text] [Related]
9. Microbial oxidation of methane and methanol: isolation of methane-utilizing bacteria and characterization of a facultative methane-utilizing isolate. Patel RN; Hou CT; Felix A J Bacteriol; 1978 Oct; 136(1):352-8. PubMed ID: 101517 [TBL] [Abstract][Full Text] [Related]
10. Microbial Oxidation of Gaseous Hydrocarbons: Production of Methylketones from Corresponding n-Alkanes by Methane-Utilizing Bacteria. Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P Appl Environ Microbiol; 1980 Apr; 39(4):727-33. PubMed ID: 16345538 [TBL] [Abstract][Full Text] [Related]
11. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures. Eng W; Palumbo AV; Sriharan S; Strandberg GW Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390 [TBL] [Abstract][Full Text] [Related]
12. Bacteriohemerythrin bolsters the activity of the particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath). Chen KH; Wu HH; Ke SF; Rao YT; Tu CM; Chen YP; Kuei KH; Chen YS; Wang VC; Kao WC; Chan SI J Inorg Biochem; 2012 Jun; 111():10-7. PubMed ID: 22484247 [TBL] [Abstract][Full Text] [Related]
13. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria. Barta TM; Hanson RS Antonie Van Leeuwenhoek; 1993-1994; 64(2):109-20. PubMed ID: 8092853 [TBL] [Abstract][Full Text] [Related]
14. Oxidation of deuterated compounds by high specific activity methane monooxygenase from Methylosinus trichosporium. Mechanistic implications. Rataj MJ; Kauth JE; Donnelly MI J Biol Chem; 1991 Oct; 266(28):18684-90. PubMed ID: 1917992 [TBL] [Abstract][Full Text] [Related]
15. Probing the hydrophobic pocket of the active site in the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) by variable stereoselective alkane hydroxylation and olefin epoxidation. Ng KY; Tu LC; Wang YS; Chan SI; Yu SS Chembiochem; 2008 May; 9(7):1116-23. PubMed ID: 18383583 [TBL] [Abstract][Full Text] [Related]
16. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Tsien HC; Brusseau GA; Hanson RS; Waclett LP Appl Environ Microbiol; 1989 Dec; 55(12):3155-61. PubMed ID: 2515801 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. Patel R; Hou CT; Felix A J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428 [TBL] [Abstract][Full Text] [Related]
18. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Fox BG; Borneman JG; Wackett LP; Lipscomb JD Biochemistry; 1990 Jul; 29(27):6419-27. PubMed ID: 2207083 [TBL] [Abstract][Full Text] [Related]
19. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). Green J; Dalton H Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230 [TBL] [Abstract][Full Text] [Related]
20. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Colby J; Stirling DI; Dalton H Biochem J; 1977 Aug; 165(2):395-402. PubMed ID: 411486 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]