These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 39503)

  • 21. [Comparative characteristics of the enzymatic systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH].
    Sokolov IG; Romanovskaia VA; Shkurko IuV; Malashenko IuR
    Mikrobiologiia; 1980; 49(2):202-9. PubMed ID: 6771495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiological studies of methane- and methanol-oxidizing bacteria: comparison of a primary alcohol dehydrogenase from Methylococcus capsulatus (Texas strain) and Pseudomonas species M27.
    Patel RN; Bose HR; Mandy WJ; Hoare DS
    J Bacteriol; 1972 May; 110(2):570-7. PubMed ID: 5022170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo- and apomethanol dehydrogenase from Methylomonas methanica.
    Patel RN; Hou CT; Felix A
    J Bacteriol; 1978 Feb; 133(2):641-9. PubMed ID: 415046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial methane oxidation in the River Saar.
    Zaiss U; Winter P; Kaltwasser H
    Z Allg Mikrobiol; 1982; 22(2):139-48. PubMed ID: 6806998
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial degradation of secondary n-alkyl sulfates and secondary alkanols.
    Lijmbach GW; Brinkhuis E
    Antonie Van Leeuwenhoek; 1973; 39(3):415-23. PubMed ID: 4543051
    [No Abstract]   [Full Text] [Related]  

  • 26. Fluorescent pigments in the newly isolated methylotrophs: Pseudomonas J16 and Methylomonas Pl1.
    Budohoski L; Michalik J; RaczyƄska-Bojanowska K
    Acta Microbiol Pol; 1978; 27(3):257-67. PubMed ID: 81599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Dissimilative sequences in methylotrophic bacteria].
    Babel W; Mothes G
    Z Allg Mikrobiol; 1978; 18(1):17-26. PubMed ID: 417474
    [No Abstract]   [Full Text] [Related]  

  • 28. Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.
    Patel RN; Hou CT; Laskin AI; Felix A; Derelanko P
    J Bacteriol; 1979 Aug; 139(2):675-9. PubMed ID: 222739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 2-Butanol and butanone production in Saccharomyces cerevisiae through combination of a B12 dependent dehydratase and a secondary alcohol dehydrogenase using a TEV-based expression system.
    Ghiaci P; Norbeck J; Larsson C
    PLoS One; 2014; 9(7):e102774. PubMed ID: 25054226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial oxidation of methane and methanol.
    Anthony C
    Adv Microb Physiol; 1986; 27():113-210. PubMed ID: 3020939
    [No Abstract]   [Full Text] [Related]  

  • 31. Alcohol dehydrogenase from Methylobacterium organophilum.
    Wolf HJ; Hanson RS
    Appl Environ Microbiol; 1978 Jul; 36(1):105-14. PubMed ID: 80974
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alcohol dehydrogenases from a facultative methylotrophic bacterium.
    Bellion E; Wu GT
    J Bacteriol; 1978 Jul; 135(1):251-8. PubMed ID: 27500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biochemistry of methylotrophic micro-organisms.
    Anthony C
    Sci Prog; 1975; 62(246):167-206. PubMed ID: 810884
    [No Abstract]   [Full Text] [Related]  

  • 34. Volatile ketone formation in bacteria: release of 3-oxopentanoate by soil pseudomonads during growth on heptanoate.
    Matiasek MG; Choudhury K; Nemecek-Marshall M; Fall R
    Curr Microbiol; 2001 Apr; 42(4):276-81. PubMed ID: 11178729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
    LUKINS HB; FOSTER JW
    J Bacteriol; 1963 May; 85(5):1074-87. PubMed ID: 14043998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria.
    Barta TM; Hanson RS
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):109-20. PubMed ID: 8092853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment.
    Sorokin DY; Jones BE; Kuenen JG
    Extremophiles; 2000 Jun; 4(3):145-55. PubMed ID: 10879559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.
    Patel R; Hou CT; Felix A
    J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial oxidation of hydrocarbons and related compounds by whole-cell suspensions of the methane-oxidizing bacterium h-2.
    Imai T; Takigawa H; Nakagawa S; Shen GJ; Kodama T; Minoda Y
    Appl Environ Microbiol; 1986 Dec; 52(6):1403-6. PubMed ID: 16347244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trimethylamine metabolism in obligate and facultative methylotrophs.
    Colby J; Zatman LJ
    Biochem J; 1973 Jan; 132(1):101-12. PubMed ID: 4722893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.