These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 3950710)

  • 1. Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe.
    Bastian J
    J Neurosci; 1986 Feb; 6(2):553-62. PubMed ID: 3950710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe.
    Bastian J
    J Comp Physiol A; 1986 Apr; 158(4):505-15. PubMed ID: 3014129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe.
    Bastian J; Bratton B
    J Neurosci; 1990 Apr; 10(4):1226-40. PubMed ID: 2158527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe.
    Bratton B; Bastian J
    J Neurosci; 1990 Apr; 10(4):1241-53. PubMed ID: 2158528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli.
    Goenechea L; von der Emde G
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):907-22. PubMed ID: 15349745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus).
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3173-96. PubMed ID: 9862915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses.
    von der Emde G; Bell CC
    J Neurophysiol; 1996 Sep; 76(3):1581-96. PubMed ID: 8890278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2497-507. PubMed ID: 8899622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nucleus praeeminentialis: a Golgi study of a feedback center in the electrosensory system of gymnotid fish.
    Sas E; Maler L
    J Comp Neurol; 1983 Dec; 221(2):127-44. PubMed ID: 6655077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.
    Bastian J
    J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of amino acid neurotransmitters in the descending control of electroreception.
    Bastian J
    J Comp Physiol A; 1993 May; 172(4):409-23. PubMed ID: 7686228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei.
    Sawtell NB; Mohr C; Bell CC
    J Neurophysiol; 2005 Apr; 93(4):2090-103. PubMed ID: 15774712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending pathways generate perception of and neural responses to weak sensory input.
    Metzen MG; Huang CG; Chacron MJ
    PLoS Biol; 2018 Jun; 16(6):e2005239. PubMed ID: 29939982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway.
    Szabo T; Enger PS; Libouban S
    J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mormyromast region of the mormyrid electrosensory lobe. I. Responses to corollary discharge and electrosensory stimuli.
    Mohr C; Roberts PD; Bell CC
    J Neurophysiol; 2003 Aug; 90(2):1193-210. PubMed ID: 12904505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences.
    Shumway CA
    J Neurosci; 1989 Dec; 9(12):4400-15. PubMed ID: 2556508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons.
    Ellis LD; Mehaffey WH; Harvey-Girard E; Turner RW; Maler L; Dunn RJ
    J Neurosci; 2007 Aug; 27(35):9491-502. PubMed ID: 17728462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional organization of the electroreceptive midbrain in an elasmobranch (Platyrhinoidis triseriata). A single-unit study.
    Schweitzer J
    J Comp Physiol A; 1986 Jan; 158(1):43-58. PubMed ID: 3723429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish.
    Zipser B; Bennett MV
    J Neurophysiol; 1976 Jul; 39(4):713-21. PubMed ID: 184257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.