BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3950718)

  • 21. Periventricular rigidity in long-term shunt-treated hydrocephalus.
    Sood S; Lokuketagoda J; Ham SD
    J Neurosurg; 2005 Mar; 102(2 Suppl):146-9. PubMed ID: 16156222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ventriculoperitoneal shunt removal on cerebral oxygenation and brain compliance in chronic obstructive hydrocephalus.
    Fukuhara T; Luciano MG; Brant CL; Klauscie J
    J Neurosurg; 2001 Apr; 94(4):573-81. PubMed ID: 11302655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abnormal brain biomechanics in the hydrocephalic child. From: Concepts in Pediatric Neurosurgery, 1982,vol 2.
    Shapiro K; Marmarou A; Shulman K
    Pediatr Neurosurg; 1993; 19(4):216-22; discussion 223. PubMed ID: 8329308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired pulsation absorber mechanism in idiopathic normal pressure hydrocephalus: laboratory investigation.
    Park EH; Eide PK; Zurakowski D; Madsen JR
    J Neurosurg; 2012 Dec; 117(6):1189-96. PubMed ID: 23061391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called "normal pressure hydrocephalus" syndrome.
    Sahuquillo J; Rubio E; Codina A; Molins A; Guitart JM; Poca MA; Chasampi A
    Acta Neurochir (Wien); 1991; 112(1-2):50-61. PubMed ID: 1763684
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of intracranial pressure monitoring in the management of childhood hydrocephalus and shunt-related problems.
    Fouyas IP; Casey AT; Thompson D; Harkness WF; Hayward RD
    Neurosurgery; 1996 Apr; 38(4):726-31; discussion 731-2. PubMed ID: 8692391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.
    Pennell T; Yi JL; Kaufman BA; Krishnamurthy S
    J Neurosurg Pediatr; 2016 Mar; 17(3):270-7. PubMed ID: 26565943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CSF shunt removal in children with hydrocephalus.
    Iannelli A; Rea G; Di Rocco C
    Acta Neurochir (Wien); 2005 May; 147(5):503-7; discussion 507. PubMed ID: 15838593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intracranial pressure changes in arrested hydrocephalus.
    Whittle IR; Johnston IH; Besser M
    J Neurosurg; 1985 Jan; 62(1):77-82. PubMed ID: 3964857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ICP patterns and isotope cisternography in patients with communicating hydrocephalus following rupture of intracranial aneurysm.
    Hayashi M; Kobayashi H; Kawano H; Handa Y; Yamamoto S; Kitano T
    J Neurosurg; 1985 Feb; 62(2):220-6. PubMed ID: 3968560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrocephalus shunts and waves of intracranial pressure.
    Czosnyka ZH; Cieslicki K; Czosnyka M; Pickard JD
    Med Biol Eng Comput; 2005 Jan; 43(1):71-7. PubMed ID: 15742722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of an electromechanical hydrocephalus shunt--a new approach.
    Elixmann IM; Kwiecien M; Goffin C; Walter M; Misgeld B; Kiefer M; Steudel WI; Radermacher K; Leonhardt S
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2379-88. PubMed ID: 25148657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Diagnosis and clinical features of infants with congenital hydrocephalus--correlation between intracranial pressure buffering capacity and indication for ventriculoperitoneal shunt].
    Sato K; Bandoh K; Wachi A
    No To Hattatsu; 1994 May; 26(3):222-6. PubMed ID: 8185974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical proof of the importance of compliance for hydrocephalus pathophysiology.
    Kiefer M; Eymann R
    Acta Neurochir Suppl; 2010; 106():69-73. PubMed ID: 19812923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors determining mean ICP in hydrocephalic patients with Hakim-programmable valve: implications of the parallel arrangement of the CSF outflow resistance and shunt.
    Taylor R; Czosnyka Z; Czosnyka M; Pickard JD
    Acta Neurochir Suppl; 2002; 81():23-6. PubMed ID: 12168312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ICP dependent changes of CSF outflow resistance.
    Tychmanowicz K; Czernicki Z; Pawłowski G; Stepińska G
    Acta Neurochir (Wien); 1992; 117(1-2):44-7. PubMed ID: 1514427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals.
    Eide PK
    Pediatr Neurosurg; 2005; 41(3):122-30. PubMed ID: 15995328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between intracranial pressure, ventricular size, and resistance to CSF outflow.
    Børgesen SE; Gjerris F
    J Neurosurg; 1987 Oct; 67(4):535-9. PubMed ID: 3655891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.