These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 3950806)
1. Ultrastructure of electrically induced osteogenesis in the rabbit medullary canal. Brighton CT; Hunt RM J Orthop Res; 1986; 4(1):27-36. PubMed ID: 3950806 [TBL] [Abstract][Full Text] [Related]
2. Electrically induced osteogenesis: relationship between charge, current density, and the amount of bone formed: introduction of a new cathode concept. Brighton CT; Friedenberg ZB; Black J; Esterhai JL; Mitchell JE; Montique F Clin Orthop Relat Res; 1981; (161):122-32. PubMed ID: 7307377 [TBL] [Abstract][Full Text] [Related]
3. Electrical osteogenesis by low direct current. Baranowski TJ; Black J; Brighton CT; Friedenberg ZB J Orthop Res; 1983; 1(2):120-8. PubMed ID: 6679856 [TBL] [Abstract][Full Text] [Related]
4. Bone formation near direct current electrodes with and without motion. Spadaro JA; Albanese SA; Chase SE J Orthop Res; 1992 Sep; 10(5):729-38. PubMed ID: 1500985 [TBL] [Abstract][Full Text] [Related]
5. Electrically enhanced osteogenesis at various metal cathodes. Spadaro JA J Biomed Mater Res; 1982 Nov; 16(6):861-73. PubMed ID: 7174712 [TBL] [Abstract][Full Text] [Related]
6. The bone growth chamber for quantification of electrically induced osteogenesis. Buch F; Albrektsson T; Herbst E J Orthop Res; 1986; 4(2):194-203. PubMed ID: 3519909 [TBL] [Abstract][Full Text] [Related]
7. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. Rubinacci A; Black J; Brighton CT; Friedenberg ZB J Orthop Res; 1988; 6(3):335-45. PubMed ID: 3357083 [TBL] [Abstract][Full Text] [Related]
8. The electrical stimulation of bone using a filamentous carbon cathode. Zimmerman M; Parsons JR; Alexander H; Weiss AB J Biomed Mater Res; 1984 Oct; 18(8):927-38. PubMed ID: 6544787 [TBL] [Abstract][Full Text] [Related]
9. Bone formation and impedance of electrical current flow. Collins PC; Paterson DC; Vernon-Roberts B; Pfeiffer D Clin Orthop Relat Res; 1981; (155):196-210. PubMed ID: 7226614 [TBL] [Abstract][Full Text] [Related]
10. Temporal course of bone formation in response to constant direct current stimulation. Esterhai JL; Friedenberg ZB; Brighton CT; Black J J Orthop Res; 1985; 3(2):137-9. PubMed ID: 3998891 [TBL] [Abstract][Full Text] [Related]
11. [The influence of direct electric current on bone formation (author's transl)]. Harris WH; Moyen B; Lahey P; Weinberg E Rev Chir Orthop Reparatrice Appar Mot; 1979 Sep; 65(6):311-6. PubMed ID: 161635 [TBL] [Abstract][Full Text] [Related]
18. Static and dynamic osteogenesis: two different types of bone formation. Ferretti M; Palumbo C; Contri M; Marotti G Anat Embryol (Berl); 2002 Dec; 206(1-2):21-9. PubMed ID: 12478364 [TBL] [Abstract][Full Text] [Related]
19. Gap healing of compact bone. Draenert Y; Draenert K Scan Electron Microsc; 1980; (4):103-11. PubMed ID: 7256198 [TBL] [Abstract][Full Text] [Related]
20. An in vitro study of electrical osteogenesis using direct and pulsating currents. Treharne RW; Brighton CT; Korostoff E; Pollack SR Clin Orthop Relat Res; 1979; (145):300-6. PubMed ID: 535287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]