These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 3950811)
41. In vitro study of the efficacy of acrylic bone cement loaded with supplementary amounts of gentamicin: effect on mechanical properties, antibiotic release, and biofilm formation. Dunne N; Hill J; McAfee P; Todd K; Kirkpatrick R; Tunney M; Patrick S Acta Orthop; 2007 Dec; 78(6):774-85. PubMed ID: 18236183 [TBL] [Abstract][Full Text] [Related]
42. Cement strain measurement surrounding loose and well-fixed femoral component stems. Crowninshield RD; Tolbert JR J Biomed Mater Res; 1983 Sep; 17(5):819-28. PubMed ID: 6619178 [TBL] [Abstract][Full Text] [Related]
43. A new bioactive bone cement: its histological and mechanical characterization. Nishimura N; Yamamuro T; Taguchi Y; Ikenaga M; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1991; 2(4):219-29. PubMed ID: 10149398 [TBL] [Abstract][Full Text] [Related]
44. Cement viscosity affects the bone-cement interface in total hip arthroplasty. Stone JJ; Rand JA; Chiu EK; Grabowski JJ; An KN J Orthop Res; 1996 Sep; 14(5):834-7. PubMed ID: 8893780 [TBL] [Abstract][Full Text] [Related]
45. The effect of centrifugation on the fracture properties of acrylic bone cements. Rimnac CM; Wright TM; McGill DL J Bone Joint Surg Am; 1986 Feb; 68(2):281-7. PubMed ID: 3944165 [TBL] [Abstract][Full Text] [Related]
46. Suppression of prostaglandin E2 synthesis in the membrane surrounding particulate polymethylmethacrylate in the rabbit tibia. Goodman SB; Chin RC; Chiou SS; Lee JS Clin Orthop Relat Res; 1991 Oct; (271):300-4. PubMed ID: 1914312 [TBL] [Abstract][Full Text] [Related]
47. Precooling of the femoral canal enhances shear strength at the cement-prosthesis interface and reduces the polymerization temperature. Hsieh PH; Tai CL; Chang YH; Lee MS; Shih HN; Shih CH J Orthop Res; 2006 Sep; 24(9):1809-14. PubMed ID: 16865715 [TBL] [Abstract][Full Text] [Related]
48. Accelerated polymerization of acrylic bone cement using preheated implants. Dall DM; Miles AW; Juby G Clin Orthop Relat Res; 1986 Oct; (211):148-50. PubMed ID: 3769255 [TBL] [Abstract][Full Text] [Related]
49. Viability and osteogenicity of bone graft coated with methylmethacrylate cement. Roffman M; Silbermann M; Mendes DG Acta Orthop Scand; 1982 Aug; 53(4):513-9. PubMed ID: 7048845 [TBL] [Abstract][Full Text] [Related]
50. Comparison of diametral shrinkage of centrifuged and uncentrifuged Simplex P bone cement. Davies JP; Harris WH J Appl Biomater; 1995; 6(3):209-11. PubMed ID: 7492813 [TBL] [Abstract][Full Text] [Related]
51. The effect of elastic modulus of the backing material on the fatigue notch factor and stress. Hedia HS; Abdl-Shafi AA; Fouda N Biomed Mater Eng; 2000; 10(3-4):141-56. PubMed ID: 11202144 [TBL] [Abstract][Full Text] [Related]
52. Shape optimization of metal backing for cemented acetabular cup. Hedia HS; Abdel-Shafi AA; Fouda N Biomed Mater Eng; 2000; 10(2):73-82. PubMed ID: 11086841 [TBL] [Abstract][Full Text] [Related]
53. Influence of stem geometry on mechanics of cemented femoral hip components with a proximal bond. Mann KA; Bartel DL; Ayers DC J Orthop Res; 1997 Sep; 15(5):700-6. PubMed ID: 9420599 [TBL] [Abstract][Full Text] [Related]
54. Bone-methyl methacrylate interfacial shear strength: an experimental study of dogs. McCarthy TC; Wells MK; Gorman HA Am J Vet Res; 1977 Jan; 38(1):75-9. PubMed ID: 835870 [TBL] [Abstract][Full Text] [Related]
55. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants. Nuño N; Madrala A; Plamondon D J Biomech; 2008 Aug; 41(12):2605-11. PubMed ID: 18692188 [TBL] [Abstract][Full Text] [Related]
56. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study. Frigstad JR; Park JB Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653 [TBL] [Abstract][Full Text] [Related]
57. The effect of a thin coating of polymethylmethacrylate on the torsional fatigue strength of the cement-metal interface. Davies JP; Singer G; Harris WH J Appl Biomater; 1992; 3(1):45-9. PubMed ID: 10147704 [TBL] [Abstract][Full Text] [Related]
58. Effect of cement pressure and bone strength on polymethylmethacrylate fixation. Askew MJ; Steege JW; Lewis JL; Ranieri JR; Wixson RL J Orthop Res; 1984; 1(4):412-20. PubMed ID: 6491790 [TBL] [Abstract][Full Text] [Related]
59. Effect of an in vivo environment on the strength of bone cement. Rostoker W; Lereim P; Galante JO J Biomed Mater Res; 1979 May; 13(3):365-70. PubMed ID: 438225 [TBL] [Abstract][Full Text] [Related]
60. Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model. Omoto O; Yasunaga Y; Adachi N; Deie M; Ochi M Arch Orthop Trauma Surg; 2008 Dec; 128(12):1357-64. PubMed ID: 18758792 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]