These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3951321)

  • 1. Lysolecithin-induced Ca2+ uptake by pigeon red cells.
    Lee JW; Ting A; Vidaver GA
    Life Sci; 1986 Mar; 38(11):1013-9. PubMed ID: 3951321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport and control of Ca2+ by pigeon erythrocytes. III. A 'paradoxical' expulsion of Ca2+ induced by a low dose of A23187 at 0 degrees C.
    Lee JW; Vidaver GA
    Biochim Biophys Acta; 1987 Oct; 903(2):257-64. PubMed ID: 2443171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Ca2+ transport by membrane vesicles from pigeon erythrocytes. Stimulation by amino acids, ATP, GTP, Pi and some other cell constituents.
    Lee JW; Vidaver GA
    Biochim Biophys Acta; 1981 May; 643(2):421-34. PubMed ID: 6784766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and control of Ca2+ by pigeon erythrocytes. II. Evidence against a simple feedback control of cell Ca2+ and evidence for the involvement of more than one pool.
    Lee JW; Vidaver GA
    Cell Calcium; 1984 Dec; 5(6):525-36. PubMed ID: 6098374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport by pigeon erythrocyte membrane vesicles.
    Ting A; Lee JW; Vidaver GA
    Biochim Biophys Acta; 1979 Aug; 555(2):239-48. PubMed ID: 476104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active Ca2+ transport by vesicles reconstituted from Triton X-100-solubilized pigeon erythrocyte membrane.
    Yeung WK; Weisman G; Vidaver GA
    Biochim Biophys Acta; 1979 Aug; 555(2):249-58. PubMed ID: 476105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport and control of Ca2+ by pigeon erythrocytes. I. Survey of some cell responses to a range of A23187 doses in the presence of Ca2+.
    Lee JW; Vidaver GA
    Cell Calcium; 1984 Dec; 5(6):501-24. PubMed ID: 6098373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vanadate changes Ca2+ influx pathway properties in human red blood cells.
    Varecka L; Peterajová E; Sevcík J
    Gen Physiol Biophys; 1997 Dec; 16(4):359-72. PubMed ID: 9595304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ABH blood group antigens in the stimulation of a DIDS-sensitive Ca2+ influx pathway in human erythrocytes by Ulex europaeus agglutinin I and a monoclonal anti A1 antibody.
    Engelmann B; Schumacher U; Duhm J
    Biochim Biophys Acta; 1991 Feb; 1091(3):261-9. PubMed ID: 2001409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane stabilizing effect of lysolecithin in calf red blood cells.
    Imre S; Horváth Z; Szilágyi T
    Acta Physiol Acad Sci Hung; 1980; 55(2):113-20. PubMed ID: 7435204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of trifluoperazine and membrane-bound sialic acid on 45Ca2+ uptake into erythrocytes.
    Günther T; Höllriegl V; Fehlinger R
    J Trace Elem Electrolytes Health Dis; 1988 Mar; 2(1):15-8. PubMed ID: 2980786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of the Ca2+ influx reveal the duality of events underlying the activation by vanadate and fluoride of the Gárdos effect in human red blood cells.
    Varecka L; Peterajová E; Písová E
    FEBS Lett; 1998 Aug; 433(1-2):157-60. PubMed ID: 9738952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes.
    Lucas M
    Biomed Biochim Acta; 1987; 46(2-3):S253-7. PubMed ID: 3109406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidermal growth factor stimulates Ca2+ uptake of human erythrocytes.
    Engelmann B; Gross V; Schumacher U; Duhm J
    Pflugers Arch; 1992 Aug; 421(5):497-502. PubMed ID: 1461718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibitory effect of cholesterol on changes in membrane permeability and potential induced with lysolecithin in red blood cells (author's transl)].
    Shinozawa S; Araki Y; Utsumi K
    Nihon Yakurigaku Zasshi; 1978 Mar; 74(2):297-302. PubMed ID: 658841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of vesicles retaining sodium-dependent transport systems for amino acids from protein-depleted membranes of pigeon erythrocytes.
    Watts C; Wheeler KP
    Biochim Biophys Acta; 1980 Nov; 602(2):460-6. PubMed ID: 7426657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid transport by resealed ghosts from pigeon erythrocytes.
    Wheeler KP
    Biochem J; 1982 Mar; 202(3):613-21. PubMed ID: 7092835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characterisation of two partially purified systems for Na+-dependent amino acid transport.
    Watts C; Wheeler KP
    Biochim Biophys Acta; 1980 Nov; 602(2):446-59. PubMed ID: 7426656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of monovalent ions on the activity of the (Ca2+ + Mg2+)-ATPase and Ca2+ -transport of human red blood cells.
    Wierichs R; Bader H
    Biochim Biophys Acta; 1980 Feb; 596(2):325-8. PubMed ID: 6101964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monensin stimulates sugar transport in avian erythrocytes.
    Bihler I; Charles P; Sawh PC
    Biochim Biophys Acta; 1985 Nov; 821(1):37-44. PubMed ID: 4063360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.