These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3951405)

  • 1. Calculation of the small-angle distribution of scattered photons in diagnostic radiology using a Monte Carlo collision density estimator.
    Persliden J; Carlsson GA
    Med Phys; 1986; 13(1):19-24. PubMed ID: 3951405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scatter rejection by air gaps in diagnostic radiology. Calculations using a Monte Carlo collision density method and consideration of molecular interference in coherent scattering.
    Persliden J; Carlsson GA
    Phys Med Biol; 1997 Jan; 42(1):155-75. PubMed ID: 9015816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy imparted to water slabs by photons in the energy range 5-300 keV. Calculations using a Monte Carlo photon transport model.
    Persliden J; Carlsson GA
    Phys Med Biol; 1984 Sep; 29(9):1075-88. PubMed ID: 6483973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The spectrum and angular distribution of x rays scattered from a water phantom.
    Cheng CW; Taylor KW; Holloway AF
    Med Phys; 1995 Aug; 22(8):1235-45. PubMed ID: 7476709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy imparted to the patient in diagnostic radiology: calculation of conversion factors for determining the energy imparted from measurements of the air collision kerma integrated over beam area.
    Alm Carlsson G; Carlsson CA; Persliden J
    Phys Med Biol; 1984 Nov; 29(11):1329-41. PubMed ID: 6505015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of scattering cross sections for increased accuracy in diagnostic radiology. I. Energy broadening of Compton-scattered photons.
    Carlsson GA; Carlsson CA; Berggren KF; Ribberfors R
    Med Phys; 1982; 9(6):868-79. PubMed ID: 7162473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of multiple scattering in Compton spectroscopy.
    Persliden J
    Acta Radiol; 1992 Jul; 33(4):384-7. PubMed ID: 1633052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent scatter in radiographic imaging: a Monte Carlo simulation study.
    Neitzel U; Kosanetzky J; Harding G
    Phys Med Biol; 1985 Dec; 30(12):1289-96. PubMed ID: 4089017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
    Bartzsch S; Oelfke U
    Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo evaluation of kerma at a point for photon transport problems.
    Williamson JF
    Med Phys; 1987; 14(4):567-76. PubMed ID: 3626996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The validity of Monte Carlo simulation in studies of scattered radiation in diagnostic radiology.
    Chan HP; Doi K
    Phys Med Biol; 1983 Feb; 28(2):109-29. PubMed ID: 6867102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the effects of anode surface roughness on x-ray spectra.
    Kákonyi R; Erdélyi M; Szabó G
    Med Phys; 2010 Nov; 37(11):5737-45. PubMed ID: 21158285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon source term after single collision in targets of silicon, copper and lead for 50-500 keV X-ray beams.
    Nariyama N
    J Xray Sci Technol; 2016 Mar; 24(3):343-51. PubMed ID: 27002900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for the comparative equivalence of scattering properties of elemental filters used in diagnostic radiology.
    Okunade AA; Ogundare FO
    IEEE Trans Med Imaging; 1999 Nov; 18(11):1098-107. PubMed ID: 10661327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulator of realistic x-ray beam for diagnostic applications.
    Bontempi M; Andreani L; Rossi PL; Visani A
    Med Phys; 2010 Aug; 37(8):4201-9. PubMed ID: 20879581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the diagnostic radiological index of protection to protective garments.
    Pasciak AS; Jones AK; Wagner LK
    Med Phys; 2015 Feb; 42(2):653-662. PubMed ID: 28102605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of low-angle x-ray scattering from some biological samples.
    Elshemey WM; Elsayed AA; El-Lakkani A
    Phys Med Biol; 1999 Dec; 44(12):2907-15. PubMed ID: 10616144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of scattered radiation from hand-held dental x-ray equipment using the Monte Carlo method.
    Batista WO; Soares MR; Rios JMG; Souza ACDS; Pinheiro IM; Ramirez JLJV; Caldas LVE
    J Radiol Prot; 2021 Sep; 41(4):. PubMed ID: 33789259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.