These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39515304)

  • 1. Traces of convergent evolution left in the structure of EgtB-IV.
    Mizutani T; Abe I
    Structure; 2024 Nov; 32(11):1854-1856. PubMed ID: 39515304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insights into the convergent evolution of sulfoxide synthase EgtB-IV, an ergothioneine-biosynthetic homolog of ovothiol synthase OvoA.
    Ireland KA; Kayrouz CM; Abbott ML; Seyedsayamdost MR; Davis KM
    Structure; 2024 Nov; 32(11):2013-2022.e5. PubMed ID: 39216472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway.
    Goncharenko KV; Vit A; Blankenfeldt W; Seebeck FP
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2821-4. PubMed ID: 25597398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.
    Song H; Leninger M; Lee N; Liu P
    Org Lett; 2013 Sep; 15(18):4854-7. PubMed ID: 24016264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and Structural Characterization of OvoA
    Wang X; Hu S; Wang J; Zhang T; Ye K; Wen A; Zhu G; Vegas A; Zhang L; Yan W; Liu X; Liu P
    ACS Catal; 2023 Dec; 13(23):15417-15426. PubMed ID: 38058600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal Structure of the Ergothioneine Sulfoxide Synthase from
    Naowarojna N; Irani S; Hu W; Cheng R; Zhang L; Li X; Chen J; Zhang YJ; Liu P
    ACS Catal; 2019 Aug; 9(8):6955-6961. PubMed ID: 32257583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Production of Ergothioneine in
    Kamide T; Takusagawa S; Tanaka N; Ogasawara Y; Kawano Y; Ohtsu I; Satoh Y; Dairi T
    J Agric Food Chem; 2020 Jun; 68(23):6390-6394. PubMed ID: 32436380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases.
    Goncharenko KV; Flückiger S; Liao C; Lim D; Stampfli AR; Seebeck FP
    Chemistry; 2020 Jan; 26(6):1328-1334. PubMed ID: 31545545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme.
    Faponle AS; Seebeck FP; de Visser SP
    J Am Chem Soc; 2017 Jul; 139(27):9259-9270. PubMed ID: 28602090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox sensing and histidine oxidation: no longer PerR-fect strangers.
    Moye-Rowley WS
    Nat Chem Biol; 2006 May; 2(5):234-5. PubMed ID: 16619021
    [No Abstract]   [Full Text] [Related]  

  • 11. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis.
    Song H; Her AS; Raso F; Zhen Z; Huo Y; Liu P
    Org Lett; 2014 Apr; 16(8):2122-5. PubMed ID: 24684381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a NifS-like protein from Thermotoga maritima: implications for iron sulphur cluster assembly.
    Kaiser JT; Clausen T; Bourenkow GP; Bartunik HD; Steinbacher S; Huber R
    J Mol Biol; 2000 Mar; 297(2):451-64. PubMed ID: 10715213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine.
    Jones GW; Doyle S; Fitzpatrick DA
    Gene; 2014 Oct; 549(1):161-70. PubMed ID: 25068406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine 55 of tryptophan 2,3-dioxygenase is not an active site base but regulates catalysis by controlling substrate binding.
    Thackray SJ; Bruckmann C; Anderson JL; Campbell LP; Xiao R; Zhao L; Mowat CG; Forouhar F; Tong L; Chapman SK
    Biochemistry; 2008 Oct; 47(40):10677-84. PubMed ID: 18783250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a bicupin protein HutD involved in histidine utilization in Pseudomonas.
    Gerth ML; Liu Y; Jiao W; Zhang XX; Baker EN; Lott JS; Rainey PB; Johnston JM
    Proteins; 2017 Aug; 85(8):1580-1588. PubMed ID: 28383128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis.
    Mo T; Yuan H; Wang F; Ma S; Wang J; Li T; Liu G; Yu S; Tan X; Ding W; Zhang Q
    FEBS Lett; 2019 Mar; 593(6):573-580. PubMed ID: 30771247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site.
    Ramelot TA; Cort JR; Goldsmith-Fischman S; Kornhaber GJ; Xiao R; Shastry R; Acton TB; Honig B; Montelione GT; Kennedy MA
    J Mol Biol; 2004 Nov; 344(2):567-83. PubMed ID: 15522305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of TTHA0303 (TT2238), a four-helix bundle protein with an exposed histidine triad from Thermus thermophilus HB8 at 2.0 A.
    Nagata K; Ohtsuka J; Takahashi M; Asano A; Iino H; Ebihara A; Tanokura M
    Proteins; 2008 Feb; 70(3):1103-7. PubMed ID: 18004771
    [No Abstract]   [Full Text] [Related]  

  • 19. Evidence for an unprecedented histidine hydroxyl modification on D2-His336 in Photosystem II of Thermosynechoccocus vulcanus and Thermosynechoccocus elongatus.
    Sugiura M; Koyama K; Umena Y; Kawakami K; Shen JR; Kamiya N; Boussac A
    Biochemistry; 2013 Dec; 52(52):9426-31. PubMed ID: 24320870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
    Liao C; Seebeck FP
    Chembiochem; 2017 Nov; 18(21):2115-2118. PubMed ID: 28862368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.