These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3952024)

  • 41. Effect of endocrine manipulations on the levels of cytosolic and nuclear receptors for androgens in dog prostate.
    Dube JY; Frenette G; Tremblay RR
    Invest Urol; 1981 May; 18(8):418-21. PubMed ID: 7228574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Androgen receptor-binding regions of an androgen-responsive gene.
    Rushmere NK; Parker MG; Davies P
    Mol Cell Endocrinol; 1987 Jun; 51(3):259-65. PubMed ID: 3036627
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter.
    Cleutjens KB; van der Korput HA; van Eekelen CC; van Rooij HC; Faber PW; Trapman J
    Mol Endocrinol; 1997 Feb; 11(2):148-61. PubMed ID: 9013762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intracellular inactivation, reactivation and dynamic status of prostate androgen receptors.
    Rossini GP; Liao S
    Biochem J; 1982 Nov; 208(2):383-92. PubMed ID: 7159407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control of proliferative growth in androgen responsive organs and neoplasms.
    Bruchovsky N; Lesser B
    Adv Sex Horm Res; 1976; 2():1-55. PubMed ID: 65115
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nuclear mTOR acts as a transcriptional integrator of the androgen signaling pathway in prostate cancer.
    Audet-Walsh É; Dufour CR; Yee T; Zouanat FZ; Yan M; Kalloghlian G; Vernier M; Caron M; Bourque G; Scarlata E; Hamel L; Brimo F; Aprikian AG; Lapointe J; Chevalier S; Giguère V
    Genes Dev; 2017 Jun; 31(12):1228-1242. PubMed ID: 28724614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steroid receptor recycling and interaction of receptor with RNA.
    Hiipakka RA; Liao S
    Am J Clin Oncol; 1988; 11 Suppl 2():S18-22. PubMed ID: 2468270
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study of the androgenic function of the epididymis.
    Pierrepoint CG; Davies P
    J Steroid Biochem; 1984 May; 20(5):1105-11. PubMed ID: 6727361
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regional expression of transforming growth factor-alpha in rat ventral prostate during postnatal development, after androgen ablation, and after androgen replacement.
    Banerjee S; Banerjee PP; Zirkin BR; Brown TR
    Endocrinology; 1998 Jun; 139(6):3005-13. PubMed ID: 9607812
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aging-associated diminished rat prostate androgen receptor content concurrent with decreased androgen dependence.
    Shain SA; Boesel RW
    Mech Ageing Dev; 1977; 6(3):219-32. PubMed ID: 559225
    [No Abstract]   [Full Text] [Related]  

  • 51. Inhibition of nucleic acid and chromatin binding of the rat prostate androgen receptor by pyridoxal phosphate, heparin and Cibacron blue.
    Mulder E; Vrij L; Foekens JA
    Steroids; 1980 Dec; 36(6):633-45. PubMed ID: 7210056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. hZimp7, a novel PIAS-like protein, enhances androgen receptor-mediated transcription and interacts with SWI/SNF-like BAF complexes.
    Huang CY; Beliakoff J; Li X; Lee J; Li X; Sharma M; Lim B; Sun Z
    Mol Endocrinol; 2005 Dec; 19(12):2915-29. PubMed ID: 16051670
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Androgens control androgen-binding sites in rat epididymis.
    Tezón JG; Blaquier JA
    Endocrinology; 1983 Sep; 113(3):1025-30. PubMed ID: 6347665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nuclear androgen binding sites in the male rat. I. Unoccupied sites in the prostate.
    Chapman JC; Frankel AI
    J Steroid Biochem; 1984 Jun; 20(6A):1285-94. PubMed ID: 6748644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locus-wide chromatin remodeling and enhanced androgen receptor-mediated transcription in recurrent prostate tumor cells.
    Jia L; Shen HC; Wantroba M; Khalid O; Liang G; Wang Q; Gentzschein E; Pinski JK; Stanczyk FZ; Jones PA; Coetzee GA
    Mol Cell Biol; 2006 Oct; 26(19):7331-41. PubMed ID: 16980632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Association of androgen binding sites with the endoplasmic reticulum of rat ventral prostate.
    Steinsapir J; Evans AC; McDonald T; Muldoon TG
    Biol Reprod; 1990 Feb; 42(2):337-49. PubMed ID: 2337629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Androgen regulation of androgen receptor content and distribution in the ventral and dorsolateral prostates of aging AXC rats.
    Boesel RW; Klipper RW; Shain SA
    Steroids; 1980 Feb; 35(2):157-77. PubMed ID: 7376216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death.
    Kyprianou N; English HF; Isaacs JT
    Prostate; 1988; 13(2):103-17. PubMed ID: 2845374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of thyroid hormone receptors with chromatin.
    Jump DB; Oppenheimer JH
    Mol Cell Biochem; 1983; 55(2):159-76. PubMed ID: 6314118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of FGF8 expression by the androgen receptor in human prostate cancer.
    Gnanapragasam VJ; Robson CN; Neal DE; Leung HY
    Oncogene; 2002 Aug; 21(33):5069-80. PubMed ID: 12140757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.