BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 3952118)

  • 1. The effect of diet and chronic obesity on brain catecholamine turnover in the rat.
    Levin BE; Triscari J; Sullivan AC
    Pharmacol Biochem Behav; 1986 Feb; 24(2):299-304. PubMed ID: 3952118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sympathetic activity, age, sucrose preference, and diet-induced obesity.
    Levin BE
    Obes Res; 1993 Jul; 1(4):281-7. PubMed ID: 16353358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats.
    Shin AC; MohanKumar SM; Sirivelu MP; Claycombe KJ; Haywood JR; Fink GD; MohanKumar PS
    Int J Obes (Lond); 2010 Jul; 34(7):1218-26. PubMed ID: 20212497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered hypothalamic leptin, insulin, and melanocortin binding associated with moderate-fat diet and predisposition to obesity.
    Irani BG; Dunn-Meynell AA; Levin BE
    Endocrinology; 2007 Jan; 148(1):310-6. PubMed ID: 17023527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity of brain alpha-adrenoceptors during the development of diet-induced obesity in the rat.
    Levin BE; Hamm MW
    Obes Res; 1994 May; 2(3):230-8. PubMed ID: 16355480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats.
    Levin BE; Dunn-Meynell AA; Ricci MR; Cummings DE
    Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E949-57. PubMed ID: 12865257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defense of Elevated Body Weight Setpoint in Diet-Induced Obese Rats on Low Energy Diet Is Mediated by Loss of Melanocortin Sensitivity in the Paraventricular Hypothalamic Nucleus.
    Luchtman DW; Chee MJ; Doslikova B; Marks DL; Baracos VE; Colmers WF
    PLoS One; 2015; 10(10):e0139462. PubMed ID: 26444289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission.
    Zhang C; Wei NL; Wang Y; Wang X; Zhang JG; Zhang K
    Neurosci Lett; 2015 Mar; 589():1-6. PubMed ID: 25578952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic Interleukin-1beta stimulates the simultaneous release of norepinephrine in the paraventricular nucleus and the median eminence.
    MohanKumar SM; MohanKumar PS
    Brain Res Bull; 2005 May; 65(5):451-6. PubMed ID: 15833600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of expression of relaxin-3 and its receptor RXFP3 in the brain of diet-induced obese rats.
    Lenglos C; Mitra A; Guèvremont G; Timofeeva E
    Neuropeptides; 2014 Jun; 48(3):119-32. PubMed ID: 24629399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced ventromedial hypothalamic neuronal nitric oxide synthase and increased sensitivity to NOS inhibition in dietary obese rats: further evidence of a role for nitric oxide in the regulation of energy balance.
    Sadler CJ; Wilding JP
    Brain Res; 2004 Aug; 1016(2):222-8. PubMed ID: 15246858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced brain CRH and GR mRNA expression precedes obesity in juvenile rats bred for diet-induced obesity.
    Michel C; Dunn-Meynell A; Levin BE
    Behav Brain Res; 2004 Oct; 154(2):511-7. PubMed ID: 15313040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-dependent regulation of hypothalamic neuropeptide Y-Y1 receptor gene expression in moderate/high fat, high-energy diet-fed mice.
    Zammaretti F; Panzica G; Eva C
    J Physiol; 2007 Sep; 583(Pt 2):445-54. PubMed ID: 17584829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of 5-HT(2A) and 5-HT(2C) receptor mRNAs in mice prone, or resistant, to chronic high-fat diet-induced obesity.
    Huang XF; Han M; Storlien LH
    Brain Res Mol Brain Res; 2004 Aug; 127(1-2):39-47. PubMed ID: 15306119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships Between Catecholamine Levels and Stress or Intelligence.
    Jung YH; Jang JH; Lee D; Choi Y; Choi SH; Kang DH
    Neurochem Res; 2019 May; 44(5):1192-1200. PubMed ID: 30887217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and dietary effects on dendrites in the rat hypothalamic ventromedial nucleus.
    Labelle DR; Cox JM; Dunn-Meynell AA; Levin BE; Flanagan-Cato LM
    Physiol Behav; 2009 Oct; 98(4):511-6. PubMed ID: 19698729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential vulnerability of male versus female rats to long-term effects of birth insult on brain catecholamine levels.
    El-Khodor BF; Boksa P
    Exp Neurol; 2003 Jul; 182(1):208-19. PubMed ID: 12821391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus.
    Lutz TA
    Nat Rev Endocrinol; 2023 Jun; 19(6):350-360. PubMed ID: 36941447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anxiety behavior and hypothalamic-pituitary-adrenal axis altered in a female rat model of vertical sleeve gastrectomy.
    Himel AR; Cabral SA; Shaffery JP; Grayson BE
    PLoS One; 2018; 13(7):e0200026. PubMed ID: 29979735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of catecholamine neurons in the ventral medulla reduces CCK-induced hypophagia and c-Fos activation in dorsal medullary catecholamine neurons.
    Li AJ; Wang Q; Ritter S
    Am J Physiol Regul Integr Comp Physiol; 2018 Sep; 315(3):R442-R452. PubMed ID: 29874094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.