BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3953966)

  • 1. The nude mouse xenograft system: a model for photodetection and photodynamic therapy in head and neck squamous cell carcinoma.
    Hill JH; Plant RL; Harris DM; Grossweiner LI; Rok B; Seter AJ
    Am J Otolaryngol; 1986; 7(1):17-27. PubMed ID: 3953966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent microscopy of hematoporphyrin derivative in the nude mouse tumor model.
    Hill JH; Rok B; Harris DM; Cobleigh MA
    Laryngoscope; 1986 Aug; 96(8):851-7. PubMed ID: 2942741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodynamic therapy for head and neck cancer xenografts in athymic mice.
    Hill JH; Plant RL; Harris DM; Paniello RC
    Otolaryngol Head Neck Surg; 1986 Dec; 95(5):602-6. PubMed ID: 3108801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth of head and neck squamous cell carcinoma in nude mice: potentiation of laryngeal carcinoma by 17 beta-estradiol.
    Somers KD; Koenig M; Schechter GL
    J Natl Cancer Inst; 1988 Jul; 80(9):688-91. PubMed ID: 3373559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoid-induced suppression of squamous cell differentiation in human oral squamous cell carcinoma xenografts (line 1483) in athymic nude mice.
    Shalinsky DR; Bischoff ED; Gregory ML; Gottardis MM; Hayes JS; Lamph WW; Heyman RA; Shirley MA; Cooke TA; Davies PJ
    Cancer Res; 1995 Jul; 55(14):3183-91. PubMed ID: 7541715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metoclopramide enhances the effect of photodynamic therapy on xenografted human squamous cell carcinoma of the head and neck.
    Werning JW; Stepnick DW; Jafri A; Megerian CA; Antunez AR; Zaidi SI
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):783-9. PubMed ID: 7598858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ineffective photodynamic therapy (PDT) in a poorly vascularized xenograft model.
    White L; Gomer CJ; Doiron DR; Szirth BC
    Br J Cancer; 1988 May; 57(5):455-8. PubMed ID: 3395551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Experimental studies of photodynamic therapy of squamous cell cancers with hematoporphyrin derivative].
    von Glass W; Kásler M; Lang T
    HNO; 1991 Mar; 39(3):91-7. PubMed ID: 1904848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenograft growth and histodifferentiation of squamous cell carcinomas of the pharynx and larynx.
    Chen J; Milo GE; Shuler CF; Schuller DE
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 1996 Feb; 81(2):197-202. PubMed ID: 8665315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model.
    Bhuvaneswari R; Ng QF; Thong PS; Soo KC
    Oncotarget; 2015 May; 6(15):13487-505. PubMed ID: 25918252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodynamic therapy of human squamous cell carcinoma in vitro and in xenografts in nude mice.
    Megerian CA; Zaidi SI; Sprecher RC; Setrakian S; Stepnick DW; Oleinick NL; Mukhtar H
    Laryngoscope; 1993 Sep; 103(9):967-75. PubMed ID: 8361317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic therapy of human malignant melanoma xenografts in athymic nude mice.
    Nelson JS; McCullough JL; Berns MW
    J Natl Cancer Inst; 1988 Mar; 80(1):56-60. PubMed ID: 2963136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle delivery of HIF1α siRNA combined with photodynamic therapy as a potential treatment strategy for head-and-neck cancer.
    Chen WH; Lecaros RL; Tseng YC; Huang L; Hsu YC
    Cancer Lett; 2015 Apr; 359(1):65-74. PubMed ID: 25596376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo model for squamous cell carcinoma of the head and neck.
    Baker SR
    Laryngoscope; 1985 Jan; 95(1):43-56. PubMed ID: 3855324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic effects of a new photosensitizer for photodynamic therapy of early head and neck cancer in relation to tissue concentration.
    Yoshida T; Tokashiki R; Ito H; Shimizu A; Nakamura K; Hiramatsu H; Tsukahara K; Shimizu S; Takata D; Okamoto I; Suzuki M
    Auris Nasus Larynx; 2008 Dec; 35(4):545-51. PubMed ID: 18242905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anti-tumour activity of rLj-RGD4, an RGD toxin protein from Lampetra japonica, on human laryngeal squamous carcinoma Hep-2 cells in nude mice.
    Shao F; Lv M; Zheng Y; Jiang J; Wang Y; Lv L; Wang J
    Biochimie; 2015 Dec; 119():183-91. PubMed ID: 26549486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Inhibitory effect of silencing hTERT gene by short hairpin RNA on growth of human laryngeal squamous cell carcinoma xenograft in nude mice].
    Liu D; Tao ZZ; Xiao BK; Chen SM; Chi HM
    Ai Zheng; 2006 Jan; 25(1):11-6. PubMed ID: 16405742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of the nude mouse xenograft model for the study of head and neck cancer.
    Braakhuis BJ; Sneeuwloper G; Snow GB
    Arch Otorhinolaryngol; 1984; 239(1):69-79. PubMed ID: 6691837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a xenograft model to explore the mechanism of bone destruction by human oral cancers and its application to analysis of role of RANKL.
    Tohyama R; Kayamori K; Sato K; Hamagaki M; Sakamoto K; Yasuda H; Yamaguchi A
    J Oral Pathol Med; 2016 May; 45(5):356-64. PubMed ID: 26859422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic review and individual patient data analysis of pediatric head and neck squamous cell carcinoma: An analysis of 217 cases.
    Bhanu Prasad V; Mallick S; Upadhyay AD; Rath GK
    Int J Pediatr Otorhinolaryngol; 2017 Jan; 92():75-81. PubMed ID: 28012539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.