These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3954753)

  • 21. Dynamics of the binuclear center of the quinol oxidase from Acidianus ambivalens.
    Aagaard A; Gilderson G; Gomes CM; Teixeira M; Brzezinski P
    Biochemistry; 1999 Aug; 38(31):10032-41. PubMed ID: 10433710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic studies on (N-formyltryptophyl)cytochrome c.
    Brittain T; Greenwood C
    Biochem J; 1975 Sep; 149(3):713-7. PubMed ID: 173295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1978 Oct; 175(1):239-49. PubMed ID: 32876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel, kinetically stable, catalytically active, all-ferric, nitrite-bound complex of Paracoccus pantotrophus cytochrome cd1.
    Allen JW; Higham CW; Zajicek RS; Watmough NJ; Ferguson SJ
    Biochem J; 2002 Sep; 366(Pt 3):883-8. PubMed ID: 12086580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of lactoperoxidase by the dithionite anion monomer.
    Ohlsson PI; Blanck J; Ruckpaul K
    Eur J Biochem; 1986 Aug; 158(3):451-4. PubMed ID: 3732278
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogenase of Klebsiella pneumoniae. Kinetic studies on the Fe protein involving reduction by sodium dithionite, the binding of MgADP and a conformation change that alters the reactivity of the 4Fe-4S centre.
    Ashby GA; Thorneley RN
    Biochem J; 1987 Sep; 246(2):455-65. PubMed ID: 3318808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of carbon monoxide recombination to fully reduced cytochrome c oxidase in plant mitochondria after low-temperature flash photolysis.
    Denis M; Richaud P
    Biochem J; 1982 Aug; 206(2):379-85. PubMed ID: 6293465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of carbon monoxide oxidation by the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum: kinetic characterization of the intermediates.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1997 Sep; 36(37):11241-51. PubMed ID: 9287167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The oxidation of Pseudomonas cytochrome c-551 oxidase by potassium ferricyanide.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1978 Aug; 173(2):681-90. PubMed ID: 212017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A diffusion-controlled step in the catalytic cycle of nitrous oxide reductase from Wolinella succinogenes.
    Mukonoweshuro C; Hollocher TC
    Arch Biochem Biophys; 1993 Oct; 306(1):195-9. PubMed ID: 8215403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-flash-photolysis studies of p-cresol methylhydroxylase. Electron-transfer properties of the flavin and haem components.
    Bhattacharyya A; Tollin G; McIntire W; Singer TP
    Biochem J; 1985 Jun; 228(2):337-45. PubMed ID: 2990445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Internal electron transfer and structural dynamics of cd1 nitrite reductase revealed by laser CO photodissociation.
    Wilson EK; Bellelli A; Liberti S; Arese M; Grasso S; CutruzzolĂ  F; Brunori M; Brzezinski P
    Biochemistry; 1999 Jun; 38(23):7556-64. PubMed ID: 10360953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An apparently allosteric effect involving N2O with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Jones AM; Hollocher TC
    Biochem Biophys Res Commun; 1992 Aug; 187(1):135-9. PubMed ID: 1520293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduction of carbon monoxide to formaldehyde by the terminal oxidase of the marine bacterium Pseudomonas nautica strain 617.
    Arnaud S; Malatesta F; Denis M
    FEBS Lett; 1992 Jan; 296(3):259-62. PubMed ID: 1537399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The electron-transfer reaction between azurin and the cytochrome c oxidase from Pseudomonas aeruginosa.
    Parr SR; Barber D; Greenwood C; Brunori M
    Biochem J; 1977 Nov; 167(2):447-55. PubMed ID: 202254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Some reactions of carbon monoxide and oxygen with carbodi-imide-modified cytochrome c.
    Mathews AJ; Brittain T
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):121-4. PubMed ID: 1645525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photolytic studies on the carbon monoxide complex of sulphaemoglobin.
    Brittain T; Greenwood C
    Biochem J; 1982 Jan; 201(1):153-9. PubMed ID: 7082280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent progress on obtaining theoretical and experimental support for the "E-pathway hypothesis" of coupled transmembrane electron and proton transfer in dihaem-containing quinol:fumarate reductase.
    Lancaster CR; Haas AH; Madej MG; Mileni M
    Biochim Biophys Acta; 2006 Aug; 1757(8):988-95. PubMed ID: 16790236
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic studies of the reduction of neutrophil cytochrome b-558 by dithionite.
    Aviram I; Sharabani M
    Biochem J; 1986 Jul; 237(2):567-72. PubMed ID: 3026324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.