These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 3954769)
1. Undesirable feature of safranine as a probe for mitochondrial membrane potential. Valle VG; Pereira-da-Silva L; Vercesi AE Biochem Biophys Res Commun; 1986 Feb; 135(1):189-95. PubMed ID: 3954769 [TBL] [Abstract][Full Text] [Related]
2. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF; Pereira da Silva L; Vercesi AE Biochim Biophys Acta; 1986 Jun; 850(1):41-8. PubMed ID: 2423127 [TBL] [Abstract][Full Text] [Related]
3. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C. Dalton S; Hughes BP; Barritt GJ Biochem J; 1984 Dec; 224(2):423-30. PubMed ID: 6517860 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control. Vercesi AE An Acad Bras Cienc; 1985 Sep; 57(3):369-75. PubMed ID: 3832980 [TBL] [Abstract][Full Text] [Related]
5. Alterations in mitochondrial Ca2+ flux by the antibiotic X-537A (lasalocid-A). Antonio RV; da Silva LP; Vercesi AE Biochim Biophys Acta; 1991 Feb; 1056(3):250-8. PubMed ID: 1705820 [TBL] [Abstract][Full Text] [Related]
6. Alloxan effects on mitochondria: study of oxygen consumption, fluxes of Mg2+, Ca2+, K+ and adenine nucleotides, membrane potential and volume change in vitro. Boquist L Diabetologia; 1984 Sep; 27(3):379-86. PubMed ID: 6500198 [TBL] [Abstract][Full Text] [Related]
7. Reye's syndrome: mitochondrial swelling and Ca2+ release induced by Reye's plasma, allantoin, and salicylate. Martens ME; Chang CH; Lee CP Arch Biochem Biophys; 1986 Feb; 244(2):773-86. PubMed ID: 3080954 [TBL] [Abstract][Full Text] [Related]
8. On the state of calcium ions in isolated rat liver mitochondria. II. Effects of phosphate and pH on Ca2+-induced Ca2+ release. Blaich G; Krell H; Täfler M; Pfaff E Hoppe Seylers Z Physiol Chem; 1984 Jan; 365(1):73-82. PubMed ID: 6201430 [TBL] [Abstract][Full Text] [Related]
9. Dissociation between mitochondria calcium ion release and pyridine nucleotide oxidation. Wolkowicz PE; McMillin-Wood J J Biol Chem; 1980 Nov; 255(21):10348-53. PubMed ID: 7430127 [TBL] [Abstract][Full Text] [Related]
10. Intramitochondrial phospholipase activity and the effects of Ca2+ plus N-ethylmaleimide on mitochondrial function. Pfeiffer DR; Schmid PC; Beatrice MC; Schmid HH J Biol Chem; 1979 Nov; 254(22):11485-94. PubMed ID: 40983 [TBL] [Abstract][Full Text] [Related]
11. On the relationship between calcium and phosphate transport, transmembrane potential and acetoacetate-induced oxidation of pyridine nucleotides in rat-liver mitochondria. Siliprandi D; Siliprandi N; Toninello A Eur J Biochem; 1983 Jan; 130(1):173-5. PubMed ID: 6825686 [TBL] [Abstract][Full Text] [Related]
12. Effect of an anti-tumor platinum complex, Pt(II) diaminotoluene, on mitochondrial membrane properties. Binet A; Volfin P Biochim Biophys Acta; 1977 Aug; 461(2):182-7. PubMed ID: 889818 [TBL] [Abstract][Full Text] [Related]
13. Protective effect of safranine on the mitochondrial damage induced by Fe(II)citrate: comparative study with trifluoperazine. Castilho RF; Pereira RS; Vercesi AE Eur J Drug Metab Pharmacokinet; 1996; 21(1):17-21. PubMed ID: 8839673 [TBL] [Abstract][Full Text] [Related]
14. Effects of hypophysectomy and administration of growth and thyroid hormones on the hydroperoxide-induced calcium release process and glutathione levels in rat liver mitochondria. Rapuano BE; Maddaiah VT Arch Biochem Biophys; 1988 Jan; 260(1):359-76. PubMed ID: 3341749 [TBL] [Abstract][Full Text] [Related]
15. Measurements of membrane potentials using the dye safranine. Akerman KE Microsc Acta; 1978 Nov; 81(2):147-53. PubMed ID: 732595 [TBL] [Abstract][Full Text] [Related]
16. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Rugolo M; Siliprandi D; Siliprandi N; Toninello A Biochem J; 1981 Dec; 200(3):481-6. PubMed ID: 6177312 [TBL] [Abstract][Full Text] [Related]
17. [Control of mitochondrial Mg++-efflux]. Höser N; Dawczynski H; Winnefeld K; Dargel R Acta Biol Med Ger; 1978; 37(1):19-29. PubMed ID: 100996 [TBL] [Abstract][Full Text] [Related]
18. Ni2+, a new inhibitor of mitochondrial calcium transport. Ligeti E; Bodnar J; Karoly E; Lindner E Biochim Biophys Acta; 1981 Dec; 656(2):177-82. PubMed ID: 7317432 [TBL] [Abstract][Full Text] [Related]
19. Interaction of oleficin with the inner membrane of rat liver mitochondria. Mészáros L; Hoffmann L; König T; Horváth I J Antibiot (Tokyo); 1980 May; 33(5):494-500. PubMed ID: 6448831 [TBL] [Abstract][Full Text] [Related]
20. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria. Beatrice MC; Palmer JW; Pfeiffer DR J Biol Chem; 1980 Sep; 255(18):8663-71. PubMed ID: 7410387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]